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ABSTRACT

The results of a contract to develop meteoritic simulators
using shaped charge techniques are presented. Explosive wave
shaping theory is discussed and radiographs of firing tests are
shown. The effect of material properties such as purity and
grain size on shaped charge jet formation and integrity is
explored. It is concluded that the acceleration of single pellets
of two grams mass to velocities of about 12 km/sec is feasible.
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DESIGN, DEVELOPMENTAND TESTING
OF BI-EXPLOSIVE SHAPEDCHARGE

METEORITIC SIMULATORS

SUMMARY

A research and development program was conducted under con-
tract NAS1-6886 for the purpose of developing meteoritic simula-
tors using shaped charge techniques. The meteoritic simulators
were to have a mass of 2 grams and a velocity in excess of 12
km/sec.

Work conducted previously on contracts NAS1-4187 and NAS1-
5212 had lead to the conclusions that for a given shaped charge
liner cane angle, the jet integrity was related to the jet velo-
city and to the liner material. Furthermore, there was evidence
that the velocity, at which jet degradation began, increased as
the liner cone angle was increased.

Based on the above observations it was proposed for contract
NAS1-6886 to form the meteoritic simulator jets using large angle
liners (50 o to 70° ) and to study the effects of material proper-
ties on jet integrity. In order to achieve the required jet
velocities from large angle liners, it was proposed to develop
a bi-explosive charge which could deliver more energy to the
liner.

The project was conducted in two major phases. First, the
bi-explosive shaped charge development was completed. Then a
program was conducted to develop a shaped charge liner which
could produce an integral jet. Concurrently, studies were made
of the effects of shaped charge liner material and explosive
charge configuration on jet integrity using a mono-explosive
charge, referred to as the hyperbolic charge (developed on con-
tract NAS1-5212), as the test vehicle.

The approach to the bi-explosive design was to surround the
inner explosive, which contained the shaped charge liner, with
an outer explosive that had a greater detonation rate. The
design incorporated an inert unit called a waveshaper that was
to prevent the inner explosive from being initiated anywhere
except at the bi-explnsive interface. An analysis of this
approach using Huygens'wavefront cou_tlo_ techniques showed
that a convergent conical detonation wave would be formed. The
conical detonation wave would intercept the liner wall so as to
give a high effective detonation rate. Furthermore, the small
angle between the wave front and the liner wall would result in
a more efficient transfer of energy from explosive to liner.



Tests with this design showed that the initial waveshaper design
and waveshaper material (Lucite)were allowing the inner explosive

to be initiated at the waveshaper-lnner explosive interface.

Tests were then conducted with lead waveshapers whereupon radio-

graphs of the detonation wavefronts showed the wave configura-

tion to be just as predicted. Since the weight limitation

imposed by NASA would not allow the use of lead waveshapers, an

investigation was made of rigid polyurethane foam as a possible

substitute. It was found that although polyurethane was not as

effective as lead, with the proper design of waveshaper it would

be acceptable. Tests were also conducted where various explosive

combinations were evaluated in terms of the velocity produced by

shaped charge liners in the bi-explosive assembly. It was

concluded that the inherent energy of the explosives was a

dominant factor, i.e., pentolite/octol would be less effective

than comp.B/octol where octol is the outer explosive and pento-

lite is less energetic than comp.B.

Shaped charge liner development began after the explosive

charge had been evaluated. The majority of the tests during this

phase of the project were conducted with lead waveshapers because

the polyurethane waveshaper development was not completed until
later. The first tests were conducted with conical liners which

would not produce integral Jets (an integral Jet is both radially

and axially stable). This was done for the sake of both economy

and expediency. Using conical liners, it was possible to deter-
mine the velocities possible from large angle liners in the bi-

explosive charge and to determine the relative degree of jet

integrity which would exist, without waiting for the development
of a liner design which could produce an integral jet. It was

found that cohesive Jets (radially stable) with velocities as

high as 12.47 km/sec were produced. These tests showed that the

70 ° liners were more prone to forming cohesive jets than 50 °

liners. They also showed that it was possible to obtain high

velocity Jets from large angle liners, using the bi-explosive

charge.

The next phase of the liner development program was to

develop a shaped charge liner design which would produce an

integral Jet. The approach was to control the liner cross-sec-

tional area so that the C/M ratio (the ratio of exploslve-charge-

mass to liner-mass, measured in a plane perpendicular to the
charge-llner axis) could be controlled. The majority of the work
was done with iron liners because NASA considered this to be the

most important material. This made the problem more difficult

because the purity and grain size of the iron which was available
affected the results. The first tests with controlled liner

cross-sectlonal areas were done with 70 ° liners. This approach

was taken because it had been demonstrated during conical liner

tests that the best chance of producing cohesive Jets was with
70 ° liners. All of the liners tested had hyperbolic inside sur-
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faces. The liner cross-sectional area was varied by modifying
the conical exterior surface of the liner. Two types of modifi-
cations were evaluated: one produced a non-linear increase in
the liner cross-sectional area from liner base to liner apex;
the second produced a linear increase in the liner cross-section
area from liner base to liner apex. Tests indicated the non-
linear variation to be the most promising. Tests were then con-
ducted with the 50° , 60 ° and 70° liners machined to the non-
linear area variation. This was done to evaluate the effect of
cone angle on jet integrity; i.e., it appeared that it would be
difficult to obtain 12 km/sec with the 70° liner (using the
existing bi-explosive design)therefore, it was desired to see
whether 60 ° or 50° liners could be used. The liners for this
test were made from electron beam melted iron which was the best
iron available at the time_ but which unfortunately possessed a
grain structure composed of large and mixed grain sizes. None of
the liners tested formed a cohesive jet. The results showed the
same tread that had been exhibited by the conical liners, i.e.,
the 50° liners gave the highest velocities, but the resultant
jets showed the largest degree of degradation. Oa the basis of
this test and others being conducted concurrently on a material
properties study, it was concluded that any further development
of an iron shaped charge liner should be done with a pure fine-
grained iron.

At this point of the project the funds available did not
allow the further effort that would have been required to obtain
and test liners made from pure fine-grained iron. It was there-
fore decided to expend the remaining effort on the development of
a nickel shaped charge liner. Previous tests with conical liners
had sho_n that a 50° liner angle was borderline in terms of jet
integrity; however, since there was not time for an extended
development program and since a jet velocity in excess of 12 km/
sec was desired, it was decided that a 50° liner with the proper
cross-sectional area variation offered the best chance that an
integral jet of the desired velocity would be produced. Tests
were conducted with comp.B/octol and octol/HMX bi-explosive char-
ges where variations in both liner area and adaptor material were
tried. Jets with velocities above 12 km/sec were obtained; how-
ever, they were not cohesive. One integral nickel jet with a
velocity of 11.25 km/sec was produced. The charge design which
produced it was borderline because a second test with the same
design produced a fragmented jet. The development ended at this
point because of lack of funds. It was concluded from the test
results that any further development should begin with 60° liners
where the loss in velocity _11_ to increasing the cone angle
should be compensated for by a reduction in liner wall thickness.

Concurrent to the major developments discussed above, tests
were conducted to evaluate the effects of liner material proper-
ties oa jet integrity.
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Also tests were conducted to evaluate the effects of variation in

charge configuration on jet character. Both programs were con-
ducted using the mono-explosive charge previously described. The

results of these programs were fed into the main development

program as the data was obtained. The material property study,

in particular, provided valuable information. Based on these
tests it was concluded that purity and grain size were important

in the formation of cohesive iron jets.

Although the main objective of the project was not reached,

all of the key developments leading to the desired goal were
successful. The results which were achieved indicate that the

goal, of a 2 gram nickel or iron jet with a velocity ia excess of

12 km/sec, can be obtained with further development of the bi-

explosive charge design.

INTRODUCTION

The objective of this project was to develop a shaped charge
meteoritic simulator which would accelerate a minimum of 2 grams
of the materials nickel and iron to velocities in excess of 12

km/sec. The meteoritic simulators with known mass, density,

velocity and material composition are needed to evaluate key

coefficients in the physical theory of natural meteors. The
artificial meteors are to be carried above the earth in a rocket

and then be projected downward through the atmosphare. The light

intensity which is recorded by photographic equipment is used to

determine a value for luminous efficiency. The latter value can
then be used to determine the masses of natural meteors which are

observed.

Firestone in collaboration with Ballistic Research Labora-

tories, Aberdeen Proving Ground, had conducted meteoritic simula-
tor development work on two previous contracts. On contract NASI-

4187 (Ref. i) an attempt was made to develop a 15 km/sec jet

pellet using a bi-metallic cylindrical liner. The bi-metal

cylinder was composed of an i_ner cylinder of the material to be

jetted and an outer cylinder of beryllium which was intended to

effect a cohesive Jet by modifying the jet formation process.

Jet material with a velocity near 15 km/sec was produced; however,
it was not cohesive.

A second attempt was made to produce 15 km/sec Jet pellets
on contract NAS1-5212 (Ref. 2). In this case the approach was to

begin the development with small angle shaped charge liners

(20 ° - 30 °) which would produce Jet velocities of lO to ll km/sec.

These designs would then be modified to increase the Jet velocity.

Using this approach it was not possible to form cohesive Jet

m"
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material at velocities beyond ii km/sec for nickel and 8.5 km/sec

for 1020 steel. During the course of the work on contract NAS1-

5212 a new shaped charge (called the hyperbolic design) was

developed and observations regarding the jet formation process
were made which led to the approach taken on the present contract.

Also, both the hyperbolic shaped charge and a slightly modified

version of a BRL shaped charge design were calibrated for mass and

velocity of the jet pellets (Ref. 3). Three of the hyperbolic

designs, assembled with nickel liners, and three of the BRL

designs, assembled with iron liners, were delivered to NASA for

rocket reentry tests.

The basis of the hyperbolic charge design was the control of

the cross-sectional area of both the explosive charge and the

liner in order to obtain an axially integral jet. The whole jet

(neglecting some non-steady state material) produced by this

design was utilized for the meteoritic simulator; whereas, for a

conventional conical design only the jet tip which is a small

fraction of the total jet could be utilized. It is believed that

the importance of the desig_ in regard to the work conducted on

the present contract, was the demonstration of the degree to which
the jet formation process could be controlled by charge geometry.

The following observations made during work on contract
NAS1-5212 were considered significant:

i. For a given shaped charge liner cone angle and

liner material there appeared to be an upper limit to the jet

velocity beyond which the jet material became progressively less

cohesive (radially unstable) as the jet velocity was increased.

2. There was evidence that as the cone angle was

increased the velocity at which jet degradation began increased.

An analysis was made (see Appendix A) using steady-state shaped

charge theory and it was found that this observation was predic-

table if the sound velocity of the liner material was assumed to

be a critical parameter.

3. For a given cone angle, the velocity at which jets

from iron liners began to degradewas lower than that for the jets
from nickel liners.

4. Tests with ingot iron and 1020 steel liners indic-

ated that both material purity and grain size might be important

in forming cohesive jets.

W

As a result of the above observations it was proposed to

meet the goals of this project by working with large angle liners

(in the range 50 ° to 70°). Once this approach was taken, it

became necessary to design an explosive charge which could deliver

additional energy to the large angle liners because, in general,
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the jet velocity produced by a shaped charge liner decreases as
the cone angle is increased. It was proposed to do this by devel-

oping a bi=explosive charge Hhich would produce a convergent
conical detonation wave. This detonation wave configuration

would deliver more energy to the liner by increasing the effective

detonation rate and by a more efficient energy coupling between

the liner and the detonation wave.

The project was subdivided into three major programs as
follows:

i. The largest and most extensive program was the

development of the bi-explosive charge design and the subsequent
evaluation of liner designs and liner materials in an attempt to

produce an integral jet.

2. A program was conducted to test various types of
nickel and iron to evaluate the effect of liner material chemical

and physical properties on jet integrity. The majority of the
tests were conducted with the hyperbolic charge developed on

contract NAS 1-5212. This charge design was used because it

allowed testing to begin prior to the development of the bi-

explosive charge. This was also reasonable from the point of

view that it was plaGned to use a hyperbolic type liner in the

bi-explosive charge.

3. A program was conducted to evaluate the effects of

changes in charge configuration (which change the C/M ratio) on

the jets from hyperbolic liners. Again, this was done with the

existing hyperbolic charge design so that testing could commence

prior to the development of the bi-explosive charge. It was

important to do this because very little of this kind of work
had been done on the hyperbolic charge under Contract NAS1-5212

and it was important to determine how sensitive the hyperbolic

charge was to variations in C/M ratios.

The above programs were carried on concurrentl_ and as soon

as important information was developed on the latter two programs,
it was used in designing charges for future bi-explosive charge

tests.

In the following main body of this report the Bi-Explosive

Charge Development aad Shaped Charge Liner Development sections

are presented first because they represent the main effort. The
Nickel and Iron Material Properties Study and the Charge Config=

uration Program follow in that order.

There were many people and organizations contributing to

the research and development work described in this report. In

appreciation of this The Firestone Tire and Rubber Company

expresses its gratitude to the following:
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Messrs. A. R. Wineman and Moses Long of the Langley Research
Center, NASA, for their technical guidance and unreserved coopera-
tion.

To Ballistic Research Laboratories, Aberdeen Proving Ground
for providing technical guidance and for providing machined
explosives when they were critically needed and specifically, to
Dr. C. M. Glass, S. K. Golaski and S. Kronman who gave valuable
technical counsel and who recognized the need for the special
explosive, and to J. Cole who pressed and machined the explosive.

To Battelle Memorial Institute and Dr. George W. P.
Rengstorff for counsel on the properties of pure iron and for the
fabrication of a sample of very pure iron which was used on the
project.

To the American Iron and Steel Iastitute and Dr. D. J.
Blickwede for donatiag the very high purity iron which was fabri-
cated at Battelle.

To the ARMC0 Steel Corporation and S. W. Zeller for donating
their technical counsel and services in the preparation of pure
iron samples, using their unique decarburization process.

TEST FACILITY

All design testing was done at the Defease Research Division
test facility at the-Raveana Army Ammuaition Plant.

Two test sites were used to study the experimental shaped
charge designs. These are referred to as the Open Test Site aad
the NASA Test Site. The Open Test Site shown schematically in
Fig. 1 was used to examine detonation wave formation, jet formatio_
and jet integrity at distances up to 30-inches from the base of
the test charge. All Open Test Site testing was done in air (i.e.
atmospheric pressure). The NASA Test Site, shown schematically in
Fig. 2, was used to examine the jet character under vacuum condi-
tions and most of the tests were coaducted with the air pressure
in the vacuum tube being i.a the range of 1 to 40 microns. The jets
were radiographed after relatively long travel times at the NASA
Test Site which resulted in a more accurate velocity determinatioa
than was possible at the Open Test Site.

At the 0p_n Test Site the charges were placed 8 to 12-inches
in fro at of blast-resistant cassettes (protective film holders used
to cushion film from the shock of the explosive detonation). The
upper cassette was used to radiograph the detonation wave co afig-
uration or to radiograph the collapse process of the liner and the
resultant jet. It was also used to radiograph the jet at distances
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of about 2 to 4-laches from the base of the test charge. A second

"window" in the upper cassette permitted a radiograph of the jet

pellet at approximately lO-inches of travel. The second cassette

(below the first one) was used during the latter half of the

testing program to radiograph the pellet at 25 to 30-inches of
travel. Velocities were measured over the interval from the top

window of the upper cassette to the lower cassette unless other-

wise noted. Field Emission Corporation Model 233 X-ray pulsers

(maximum voltage 300 Kv) were used for the radiography. Times

used to determine the velocity were recorded using a Polaroid

camera attached to a Tektronix model 545 single trace oscilloscope.

At the NASA Test Site rounds are fired through an evacuated

6-inch diameter aluminum tube 9-feet in length, passing two ortho-

gonal radiographic stations centered approximately 35 and 95-

inches from the base of the round. Using the data supplied by the

orthogonal views and a computer program written to perform a three

dimensional analysis, the jet pellet position and attitude in

space were calculated. The mass and velocity of the jet could
then be obtained directly from an IBM 1620 or an IBM 360 computer

output (the jet mass was determined by this method only if the

jet was integral). Field Emission Corporation Model 231 X-ray

pulsers (maximum voltage 105 Kv) were used for the radiography.

Times were measured by two independent methods. Two Beckman Model

7270 digital readout counters (triggered to start during the

initiation of the tetryl booster and to stop by current viewing
resistors mounted on the face of the X-ray pulser) were used in

one method with a second back-up method 'using a Tektronix Model 545

oscilloscope similar to the test set-up at the Open.Test Site. The

pressure level was measured with a Ki_ney model KT93 Thermocouple

Vacuum Gage.

The vacuum system used under contracts NAS1-4187 and NAS1-

_212 was capable of reaching 40 microns in a pumping time of 60

to 90 minutes. For the work on contract NAS1-6886, NASA requested

improvements on the system so that a 1 micron vacuum level could

be reached. The system was re-designed to include a Kinney Model

KDP-6, 6-iach diameter diffusion pump coupled to the existing
KiGney Model KC-15 mechanical pump. Plumbing from the pumps to

the vacuum tank was shortened and opened to a 4-inch inside

diameter. A remotely operated 4-inch diameter ball valve was

built into the system to protect the pumps during firing. Warm-up

time for the diffusion pump was found to be about 15-mlnutes. The

new system is presently capable of reaching less than one micron
and has a pump-down time (starting with a cold diffusion pump)

of 20 to 30 minutes.
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. RESULTS AND DISCUSSION

ub Bi-Explosive Charge Development

The development of an explosive charge which would produce a

conical detonation wave was the first objective of the meteoritic

simulator program. A conical detonation wave was required because

the general approach to the problem included the use of large

angle liners (50 ° to 70 ° ) and the principal way known to obtain

high jet velocities from the large angle liners was to increase

the effective detonation rate of the explosive. It was decided

to do this by waveshaping and specifically_ to form a conical wave
so that the effective detonation rate would be constant.

The waveshaping was accomplished by the use of bi-explosive

charges. The functioning of these charges depended upon the use
of two explosives with different detonation rates and an inert

waveshaper. An analysis was made to determine the effect of

various charge parameters on the bi-explosive charge design.

Based on this study, two charge configurations were designed which

would allow the evaluation of shaped charges with cone angles in
the range 50 ° to 70 °.

The first tests consisted of radiographing the wave fronts

for various explosive combinations. A study was then made of the

effect of both waveshaper material and waveshaper design on the

detonation wave configuration. Finally_ preliminary tests were

conducted to determine the effectiveness of various explosive

combinations in producing nickel and iron jet velocities in the

neighborhood of 12 km/sec. A detailed discussion of the bi-explo-

sive charge development follows.

Design 9tudies. - An analysis of the bi-explosive system was

made using the assumption that any point in the explosive which is

initiated will act as a center from which a spherical detonation

wave will emanate. Experience indicates that this is a reasonable

assumption. The spherical wave front will expand into the undet-

onated explosive at a constant rate equal to the explosive detona-
tion rate.

Consider the schematic drawing in Fig. 3 where a two-dimen-

sional bi-explosive system is shown. Assume that explosive 2 has

a greater detonation rate than explosive 1 and assume that a

detonation originates at point A. The detonation will progress

into explosive 2 as an expanding circular wave front and will

initiate explosive 1 along the interface line _ AB. As each point

of explosive 1 is initiated along the line AB it acts as the

center of an expanding circular wave. Fig. 3 was constructed by

assuming that the detonation rate of explosive 2 (u 2) is 2_ per

9



cent greater than the detonation rate of explosive i (Ul). It is
seen that as the detonation front moves from A to B in explosive

2, the detonation front in explosive 1 moves from A to C. Also,

as the detonation front in explosive 2 moves from E to B, the

front in explosive 1 moves from E to J, etc.

It is seen that the envelope of the circular wave fronts is

a straight llne, BC, at the instant the detonation front in explo-

sive 2 is at point B. Note that the straight line BC ends at

point C and that for points to the right of C_ the detonation

front in explosive 1 is circular.

Since line BC is tangent to the circular front of radius AC

at point C, it follows that angle ACB is a right angle. It
follows then that the angle between the linear wave front BC in

explosive 1 and the bi-explosive interface BA can be determined

from the ratio of the detonation rates. Let angle ABC equal _ then

therefor e

AC
sin ¢ = -- (1)

AB

but AC = ult

and AB = u2t

sin = Ul__!t
u2t

where t is time

or sin @ = Ul (2)

u 2

This result is analogous to that which occurs when a supersonic

projectile moves through the air and produces a shock wave where

u_ would be the projectile velocity and u I would be the velocity
oF sound in air. Watson et. al. (Ref. 4) have conducted experi-

ments with bi-explosive charges and have found that measured

values of # (from radiographs) correlated very well with those

calculated from equation 2.

J
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Design of bi-explosive shaped charge. - The purpose of the

bi-explosiye concept is to generate a conical detonation front
which will have an included angle that is as close to the liner

cone angle as possible. For a given explosive in contact with the

liner, the greatest jet velocity should occur for this condition.

An analysis was made to determine what values of conical
detonation front cone angle could be obtained with available

explosives and within the restrictions of the charge dimensions

allowed by NASA.

The analysis was approached in the manner shown in Fig. 4.

The line PoPL represents the interface between explosive 1 and

explosive _ (where u2>ul).

The line BCD represents the wave front in explosive i at

some time after the initiation has started at point P4. The

initiation _t point P4 will be effected by a detonation wave
starting at the rear of the charge and traveling around an inert

barrier referred to as a waveshaper. The straight segment of the

wave front is line BC while the line segment CD is a circular arc.

It is desired that the geometry of the system be such that the

linear portion of the wave front BC will intersect the liner wall

as shown by the line B'C' (where C' and P_ are coincident) The
angle between the detonation front and th_ charge axis is in+8)

where _ is the shaped charge liner half-angle.

For purposes of discussion it is convenient to consider the

angle 8_ which is the angle between the detonation front and the
shaped charge liner wall. In general the optimum condition will
occur when 8 is zero. An examination of Fig. 4 shows that_ for

a given pair of explosives (which fixes the angle 8)_ the angle 8

is a function of the liner radius, P]Pp_ the liner height_ P]Pw_

and angle PhPgPq which is the angle _h_t the bi-explosive in_e@face

makes with th_ _orizontal. Angle P4P2P3 is controlled primarily

by the charge radius PIP7 .

That is_ the radius of the waveshaper_ P6P4 (equals length

of PIP3 ) is made to be about i/8-inch less than the charge radius_
therefore_ the radial position of point P4 depends on the radius

PIP7 . If there were no limitation on charge radius_ then the line

P2P4 could be rotated about P9 until the detonation front BC was

parallel to the liner wall P2P_ making 8 equal to zero. However_
the charge radius is fixed_ whlch fixes the maximum radial posi-

tions of P4 and allows only a vertical movement of point P4. Tku%
for a given shaped charge liner configuration there is an optimum

vertical position of P4. if P4 is too far above the line PIPT_

the line P4P5 will intersect the charge axis PiPsP6above the liner
apex, adding unnecessary explosive to the charge. If P4 is too

low, the line P4Pgwill intersect PIP,P6 below the liner apex
causing a portion'of the curved deZohation front, CD, to strike

the liner wall, which is not desirable.
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A general solution to the problem of determining the posi-
tion of P4 for a given liner angle (2a), liner diameter, and ex-
plosive combination was obtained. The mathematical development is
described in Appendix B. Values for the position of P4 and for 8
were determined for the following parameters:

Liner Angle (2_)
Explosive 1

Explosive 2

- 50 ° , 70 °

- octol, comp. B, pentolite, TNT,
baratol

- octol, HMX

where octol and HMX were paired with each of the other explosives

to form the bi-explosive system. The results are listed in Table

I. It is seen that for a given outer explosive, the Y position of

P_ and 8 both decrease as the detonation rate of the inner explo-
sive decreases. Also, note that the value of 8 is smaller for a

given inner explosive when HMX rather than octol is the outer

explosive. The values of 8 obtained for the cases where baratol

is the inner explosive are seen to be negative. This means that

the conical detonation wave is tilted sufficiently such that it

will strike the base of the liner first, instead of the apex.
This result occurs because of baratol's low detonation rate and

because the radial position of P4 was held constant. The value of
8 could be made zero by reducing the radial coordinate of P_.

This would be comparable to rotating the llne P2P4 in Fig.
counterclockwise.

A value u E is listed in the table which gives the effective
detonation rate-of the bi-explosive charge as though it were a

single explosive. The effective detonation rate is obtained from

the expression

u E

u I cos

sin 8

(3)

where, u is the detonation rate of the inner explosive of the
bi-explo½ive Osystem, is the angle between the detonation front

and the liner wall, and _ is the liner half angle. The expression

is obtained by equating the time it would take a conical detona-

tion front to sweep a given length of liner wall to the time it

would take a plane detonation wave (traveling parallel to the

liner axis) to sweep the same length. The relationship is derived

in Appendix B.

The values of u E listed in Table I are probably the best

measure of the relative effectiveness of various explosive

combinations. The values u E are generally very large relative to
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the detonation rate of single explosives. In fact, when e is

zero, u_ becomes infinite. This would be the case for baratol if

the deslgn were adjusted to cause 0 to be zero (the negative value

of u E for baratol simply means the detonation wave would sweep the

liner from liner base to liner apex). The bi-explosive design can

be thought of as a way of making a higher detonation rate explosive
from two ordinary explosives. There is a limitation to the con-

cept, however, in that the jet velocity depends on the energy

inherent in the inner explosive, as well as on the effective

detonation rate• Thus, even though the data in Table I would seem

to indicate that baratol is the best inner explosive, this was not
the case, because it is the least energetic of the explosives
considered.

In order to limit the number of loading fixtures which would

have to be made, it was decided to try one design (one value of

P4) for the _0 ° liner and one for the 70 ° liner. A value of P4

was chosen from Table I for each of the two designs, one that lies

between the optimum values for octol/comp.B and octol/pentolite.

The decision to choose a value of P4 below the comp.B optimum was

made to insure sufficient explosive above the waveshaper.

All explosive combinations were tested in these two designs.
Since the point P4 was arbitrarily chosen for the latter two
designs, the values of 0 listed in Table I were not valid. A set

of values for 0 was calculated for the chosen values of P4 and is
presented in Table II. The method of calculation is included in

Appendix B. Note that for the case of an octol/baratol charge and

a 50 ° liner, the angle 0 is positive and almost zero; for the 70 °
liner 0 is negative. It should be pointed out that because the

values for P4 were chosen below the optimum value for comp.B, a

small portion of curved detonation front would be expected to
strike the apex of the liner for the octol/comp.B combination.

Two bi=explosive charges were designed using the values of

P4 given in Table II. Assembly drawings of them are shown in Figs.
5 and 6. The method of assembling the charges is shown in Fig. 7.

Bi-exDlosive charge waveshaper tests. - The purpose of the
initial bi-explosive charge studies was to radiograph the detona-

tion wavefront for various explosive combinations in order to

observe the wave forms produced and to measure the angle 0 between
the wavefront and the liner wall. These tests revealed that

waveshaping was occurring and that the straight portion of the

wavefront formed approximately the predicted angle 0. However,
the portion of the curve near the charge axis was different than

expected; it formed a smooth curve through the center of the charge,
convex upward (toward the waveshaper). This result showed that the

Lucite waveshaper had not completely performed its function; it had
allowed the inner charge (of the bi-explosive system) to be initi-

ated at the waveshaper-inner charge interface.
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Tests were then conducted with lead waveshapers. It was

known that lead had the property of transmitting shocks at low

velocity aad would, therefore_ perform the required waveshaping.
Tests conducted with the lead waveshapers showed that the detona-

tion wavefronts were remarkably close to those predicted by

Huygens' construction methods.

A third series of tests was then conducted using rigid

polyurethane foam as the waveshaper material. It was necessary

to find a lighter waveshaper material as a substitute for lead

because the weight of a lead waveshaper could not be tolerated

in the final design. Polyurethane waveshapers of various angles

were tested. It was found that while the rigid polyurethane

foam did not work as well as lead, it would be acceptable with

the proper waveshaper configuration.

Details of the tests summarized above are given in the

following sections.

Lucite waveshaper tests: The first bi-explosive charges
tested were not assembled with shaped charge liners. A 40 ° liner

with a 2-inch diameter base and a O.25-inch flat apex was used to

mold a conical cavity inside the inner charge. (This liner con-

figuration was used simply because it was available at the time.)

The bi-explosive charges incorporated a Lucite waveshaper with a

90 ° apex angle (shown as item 7 in Fig. 8). Lucite was chosen as

a waveshaper material because it had been previously used for

this purpose in shaped charge designs. The particular configura-
tion shown in Fig. _ had been used in a test conducted on Contract
NAS1-4187.

The test results are summarized in Table III.

of the results follows:

Discussion

1. (Tests 923-1, 923-2, 923-4, 923-6) - These charges

were the first ones tested to determine the degree of waveshaplng

achieved with the bi-explosive charge design. The explosive

combinations comp.B/octol, pentolite/octol and baratol/octol were

evaluated. It was found that a waveshaplng effect was occurring.

The detonation wave in the outer explosive (octol) was observed to

lead the detonation front, while the detonation wave in the inner

explosive started at the octol front and swept back toward the

base (initiation point) of the charge. For the two laner explo-

sives_ comp.B and pentolite, the detonation wave had a straight

line portion near the bi-explosive interface, then became curved
near the charge axis. The curve was convex upward (toward the

initiator). The detonation front in baratol was not observed

because of the high X-ray absorption of the gaseous explosive

products.
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2. ( Tests 923-9 through 923-14) - This group of
charges was fired in an attempt to obtain better resolution of the

detonation front and to obtain radiographs of the detonation

fro at at various positions between the waveshaper and the apex
of the conical cavity in the i_ner explosive.

It was found that a smaller X-ray source-to-film distance

improved the resolution of the detonation front in the radiographs.

Radiographs of the detonation front taken between the waveshaper
and the apex of the conical cavity confirmed that the Lucite

waveshaper transmitted a shock wave of sufficient pressure and

velocity to initiate the i_ner explosive (at the waveshaper-explo-
sire interface) before it could be initiated by the detonation

wave originating at the bi-explosive interface. A comparison is
made between predicted wave fronts and radiographs of the wave

fronts in Fig. 9 for various charge designs. It can be seen that

the detonation front for the Lucite waveshaper(Tests 923-13) spans
the whole inner explosive. It should be pointed out that the modi-

fication of the wavefront due to shock initiation by the Lucite

waveshaper was most severe in the region between the waveshaper
and the liner apex. As the detonation wave proceeded toward the

bottom of the charge, the effect of initiation at the bi-explo-

sive interface became dominant. (This is due to the higher

detonation rate of the outer charge of the bi-explosive system.)
In fact, the wave (for Lucite waveshapers) was observed to be

approaching a conical form by the time it reached the apex of the
charge cavity.

Lead waveshaper tests: As a result of the tests just dis-
cussed, it was concluded that the shock velocity in Lucite was too

high to be used in the existing bi-explosive charge design. In

order to study the waveshaping phenomena with the waveshaper

performing its intended function, a new waveshaper was designed
(Fig. 8 - item 5) where the angle _ was changed from 90 ° to 80 °.

Lead was chosen as the waveshaper material because of its known

low shock velocity. As stated previously_ lead was used strictly

for purposes of the experiment; its high density would prohibit
its use in the final design.

The test data for the first lead waveshaper tests are in-

cluded in Table III(Tests 923-15, 923-16, and 923-17) and radio-

graphs of the detonation waves are included in Fig. 9. Notice

the excellent correspondence between the predicted waveshape

(by Huygens' construction) and the actual waveshape. This indic-

ates that detonation waves formed with bi-explosive designs can

_ u_scribed quite well using the relatively simple Huygens'
construction approach.

Table IV compares the predicted angle e, between the wave

front and the conical cavity wall, with the average measured value.
The two values are seen to compare very well for the case of the
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lead waveshaper. This further indicates the usefulness of the

technique used for analyzing bi-explosive charge designs.

There is a phenomenon involved in the waveshaping process
which should be mentioned. ExperiEental studies have been con-

ducted (Ref. 5) which show that when detonation waves intersect,

another wave called a Mach wave (Mach bridge or Mach stem) can be

formed. The Mach wave travels in a direction along the axis of

symmetry between the intersecting waves. It has been found that

Mach waves form when the included angle between the intersecting

waves is in the neighborhood of lO0 °. The _uestion arose as to

whether the intersecting detonation waves produced by the bi-

explosive system would give rise to Mach waves. Radiographs of

the detonation such as shown in Fig. 9,Test 923-17, showed no

evidence of Mach waves; however, this may have been due to the
small angle of intersection. As the wave approaches the conical

shape, the angle of intersection will increase to the point that

a Mach wave may form. However, at this point the detonation wave

will begin to intersect the shaped charge liner, thereby pre-

venting the formation of a Mach wave.

It was concluded that the bi-explosive system would generate

the desired conical wave when the waveshaper functioned properly.

Polyurethane foam waveshaper tests: Rigid polyurethane foam

was evaluated in four configurations. Three of the designs in-

corporated 60 ° , 70 ° , and 80 ° angles, shown as items l, 3, and 5

in Fig. 8. The fourth design, shown in Fig. lO, had an included

angle of 43 ° and was truncated.

The test data are summarized in Table V and radiographs of

the resultant wave are included in Fig. 9.

The test with the 80 ° waveshaper (Fig. 9,Test 923-21) shows

that this design was a great improvement over Lucite. It is seen

that there is some curving of the wave near the charge axis; how-

ever, the basic waveshape desired was produced. Radiographs for

the 70 ° and 60 ° designs (Fig. 9,Tests 923-32, 923-33) were taken
at an earlier time than that for Test 923-21 in order to observe

conditions at the waveshaper-explosive interface. Examination of

the radiographs revealed that some initiation might be occurring

for both the 70 ° and 60 ° designs.

During a review of these results it was recommended by
Ballistic Research Laboratories that a truncated waveshaper design

be tried. It was agreed that the design shown in Fig. lO be

tried. A radiograph taken during one test with this design (Fig.

9,Test 923-35) shows a wave with about the same shape as that from

a lead waveshaper (Fig. 9, Test 923-15).
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It was concluded that although the above results did not

definitely prove that the 4_o truncated design is as good as a

lead waveshaper, it would be acceptable. It was reasoned that
even though there might be a small modification to the center of

the wave in the region between the waveshaper and the liner apex,
the wave would be conical by the time it reached the liner apex.

A photograph of an inert sectioned model, which incorporates the
43 ° polyurethane waveshape_, is shown in Fig. 12.

Bi-explosive charge jet velocity tests. - The initial tests,
to determine the velocities which could be obtained from bi-explo-

sive charges, were conducted with 40 ° hyperbolic liners, Fig. ii.

These liners, discussed later in this report, were used because
it was convenient to do so at the time of the test. The 40 ° liners

were assembled in the 50 ° loading fixture (Fig. 7). Since the

40 ° liners were taller than the 50 ° liners, their apexes would
be intercepted by a curved portion of the detonation front. This

would tend to produce a velocity gradient in the jet because the

rate at which the detonation wave swept the liner wall would vary.

Tests were conducted with comp.B/octol, pentolite/octol, and
baratol/octol bi-explosive charges. The first charges tested were

assembled with Lucite waveshapers, the later ones were assembled
with lead waveshapers. Both nickel and iron liners were evaluated.

Most of the tests were conducted in air where the jets were
radiographed after only six to ten inches travel. This was done

because the velocities which would be produced by the various
explosive combinations were unknown and more error can be tolerated

in estimated radiograhic times when jet travel is short.

The data are summarized in Table Vl where it is seen that

velocities in the range i0.i km/sec to 11.9 km/sec were achieved

and that the jets produced were not cohesive. The latter condition

was attributed primarily to the fact that the cone angle was too

small to permit cohesive jet formation at the velocities achieved.

The first three charges listed in Table Vl(Tests 923-3,
923-5, 923-7) show that the comp.B/octol and pentolite/octol

charges produced approximately the same jet velocities, while the

baratol/octol charge produced the lowest velocity (10.1 km/sec).

The latter result provides two important insights into the bi-

explosive charge designs. First, the fact that a shaped charge

liner cast with baratol produced a jet velocity as high as lO.1

km/sec shows the effectiveness of the waveshaping process. This

follnw_ _ ÷_^ _^_ _ _-_^_ pi............... _ _ _,_ _u_ is a very low energy ex osive

and that even a cylindrical shaped charge liner, cast in a cylin-

drical baratol charge and initiated in the conventional way,
would be expected to produce a jet velocity no greater than 8.2

km/sec (twice baratol's detonation rate). The other important
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observation is that while waveshaping enhances the effectivenss

of a given inner explosive, the inherent energy of the inner

explosive is very important. That is, it can be determined from
Table II (taking into consideration that a 40 ° liner was tested)

that the effective detonation rate was about 38.7 km/sec for the

baratol/octol charge, yet the jet veloci_es for the comp.B/octol

and pentolite/octol charges were greater even though their effec-

tive detonation rates were much lower. Based on these results,

it was decided to employ bi-explosive charges with the highest

energy explosive combination available. At fir_ this was comp.B/
octol; later it was octol/PBX 9404 or octol/HMX.

The data for Rds. 923-19, 923-23 in Table Vl show the

results of a first attempt to eliminate the jet velocity gradient

by modifying the liner design. This technique is discussed in

detail later in the report. It is seen that the velocity differ-

ence between jet tip and jet tail was reduced from 0.6 km/sec to

0.3 km/sec by the modification. This encouraging result was the

basis for using this approach in later designs aimed at elimin-
ating the jet velocity gradient.

Conclusions. - The results of the bi-explosive charge devel-
opment allow the following conclusion to be made:

i. The bi-explosive method of forming a conical
detonation wave was successful.

2. The Huygens' construction method adequately
described the bi-explosive detonation wave formation for purposes
of charge design.

3. Waveshaping can produce a significant increase in

jet velocity for a given inner explosive.

4. The selection of a pair of explosives for a bi-

explosive charge should be made such that the highest energy

explosive possible is used as the inner charge, for a given outer
charge. For example, octol/HMX is preferable to comp.B/octol

because octol as the inner charge will deliver more energy to the
liner than comp.B as the inner charge.

t

Shaped Charge Liner Development

The liner development studies were conducted in two major

phases. First, conical liners were evaluated in the bi-explosive

charge and then hyperbolic liners, designed to reduce the jet
velocity gradient, were tested.

a
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The conical liners were tested knowing that a jet with a

large velocity gradient would be produced. The reason for testing

them was that the range of jet velocities and the degree of jet

integrity obtainable from bi-explosive charges could be determined

for a range of cone angles with relatively low cost liners. Cone

angles of 50 ° , 60 ° and 70 ° were evaluated with wall thicknesses

varying in the range .030 to .050-inch. The liners were tested

in both comp.B/octol and octol/PBX 9404 bi-explosive charges.

The various hyperbolic liner designs tested were aimed at

producing an integral jet (a jet exhibiting no axial or radial
dispersion). The tests with theconicalliners had shown that it

was possible to form cohesive jet material with a nominal jet

velocity of 12 km/sec. The hyperbolic liners were designed to
control the charge-to-mass (C/M) ratio in a manner to reduce or

eliminate the jet velocity gradient, thereby producing an integral
jet.

Detailed discussions of the liner designs and test results

are presented in the following sections.

Conical liner tests. - The conical liners tests_ as was

stated earlier_ were intended to determine the velocities obtain-
able from the bi-explosive charge system as well as the character

of the jet material for a series of liner cone angles. The

majority of the tests were conducted with 50 ° and 70 ° nickel and

iron liners with wall thicknesses of .030 and .050-inch. A few

tests were also conducted with 70 ° nickel liners that had wall

thicknesses of .015 and .020-inch and with a 60 ° iron liner that
had a .O40-inch wall.

The conical liners were tested in either of two bi-explosive

charge configurations; the 50 ° design or the 70 ° as shown in
Figures 5 and 6. As was stated earlier in the section on bi-

explosive charge development_ the 50 ° and 70 ° charges were de-

signed such that the 50 ° and 70 ° liners would be swept by conical

detonation waves except for a very slight curvature at the liner

apex for most explosive combinations. Thus, for the case of the

50 ° charge, all 2-inch diameter liners with cone angles greater

than 50 ° will be swept by a conical detonation wave. Any liner

with a cone angle less than 50 ° will have its apex region swept by

a curved front (due to the greater height of the smaller angle

liner). The same reasoning follows for the 70 ° charges.

The shapes of the detonation fronts (at one microsecond time
_terw _-_ __ _ _ ........ _j _u± _i_ ju- _lu 70 ° charges are shown in Fig. 13 for the

two explosive combinations comp.B/octol and octol/PBX 9404. It is

seen that for all cases the liner apex experienced a very slight
curved detonation front.
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All of the bi-explosive charges, for the conical liner

program, were assembled with lead waveshapers because the poly-

urethane waveshaper had not yet been developed.

The results of the conical liner tests are summarized in

Table VII. Note that except for a few cases each liner design
was tested in both air and vacuum. The velocities determined

under vacuum conditions are considered more accurate because of

a more accurate time interval measurement. In the following

discussions, wherever possible, the velocities referred to are
those determined in vacuum.

50 Degree conical liner tests: Fifty degree conical liners
made from nickel 200 and Forma iron were tested in the 50 ° comp.B/

octol bi-explosive charge. Liner wall thicknesses of .030-inch
and .050-inch were tested. A drawing of the 50 ° conical liner is

shown in Fig. 14.

The data in Table Vll shows that the .030-inch wall thick-

ness liners produced jets with tip velocities of 11.3 km/sec and
> 11.6 km/sec for the materials nickel 200 and Forma iron respec-

tively. However, liners from both materials failed to produce

cohesive jets as shown by the radiographs in Fig. 15(Tests 923-45,

923-30).

The .050-inch wall thickness liners produced jet velocites

of 10.23 km/sec and 10.7 km/sec for nickel and iron respectively.

The radiograph in Fig. 15(Tests 923-44, 923-29) show that the

nickel jet was cohesive and that all but the tip of the Forma iron

jet was cohesive.

It was concluded that for 50 ° conical liners, a jet velocity

of 11.34 km/sec is borderline in regard to nickel jet integrity

while a velocity of 10.7 km/sec is borderline for Forma iron.
Further evaluation of 50 ° liners in an attempt to produce an

integral 12 km/sec jet was not ruled out however, for two reasons.

First, purer forms of both nickel and iron were available for
subsequent tests and it is shown in other sections of this report

that jet integrity is related to the chemical and physical proper-

ties of the liner material. Secondly, there was the possibility

that changing the liner configuration could improve the jet

integrity.

60 Degree ingot iron liners: Two tests were conducted with

.040-inch wall ingot iron liners in the comp.B/octol hi-explosive

charge. The liners were made from ingot iron because they could

be easily modified from some existing 60 ° liners in stock. It is

seen in Table VII that a nominal jet velocity of 10.6 km/sec was

obtained. The jets appeared to be cohesive after about 36-inches

of travel in air.
m
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70 Degree conical liner tests: The majority of the 70°
liners were made from Forma iron and nickel 200 and were tested

with wall thicknesses of .030-inch and .050-inch. A few addi-
tional tests were conducted with nickel liners where wall thick-

nesses of .O15-inch and .020-inch were tried. A drawing of the

70 ° liner is shown in Fig. 16. The 70 ° liners were tested in both

the 70 ° and 50 ° bi-explosive charge designs. The latter charge
configuration was used for the 70 ° liners when PBX 9404 was used

as the outer explosive. This was necessary because loading
fixtures to assemble bi-explosive charges with PBX 9404 or HMX

were fabricated only in the 50 ° design.

The .O30-inch wall thickness liners were tested with comp.B/

octol, comp.B/PBX 9404 and octol/PBX 9404 bi-explosive charges•

The PBX 9404 referred to above is a plastic bonded explosive

containing 94% HMX which is described in more detail in a follow-

ing section of the report• The outer charges composed of this

explosive were fabricated by Ballistic Research Laboratories•
When tests with this material showed it to be desirable for

achieving higher jet velocities_ a press loading fixture (Fig. 17)
was designed which made it possible to press load HMX outer

charges at the Ravenna explosive loading facility. These charges

consisted of 98% HMX. Tests with both units indicated that their

performance was such that they could be interchanged in the bi-

explosive charge. Thus_ in the following discussion no effort is

made to separate the results for the two types of outer charges_
other than to show which one was used for a given test.

The other 70 ° liners with .O15-inch, .O20-inch and .050-inch

wall thicknesses were tested in comp.B/octol charges except for one

.050-inch wall liner where the inner and outer explosives were

both octol (which produced a peripherally initiated charge). The
test data are included in Table VII and the results are described

in the following sections:

1. 70 Degree nickel liners with comp.B/octol bi-explo-

sire charge: a jet tip velocity of 10.3 km/sec was obtained for

the conical nickel liner with the .030-inch wall thickness (Test

924-4) and a velocity of 9.2km/sec was observed for the .050-inch

wall thickness liner(Test 924-2). A velocity difference of about

1.2 km/sec existed between the jet tip and jet tail for these

charges. The jet material was cohesive in that there was no radial

dispersion as shown in Fig. 15(Tests 924-4, 924-3)

Two additional nickel liners were tested_ one with
•020-inch wall thickness and the other with .O15-inch wall thick-

hess. The .020-inch wall liner(Test 946-7) gave a jet velocity of

12.49 km/sec. The jet material tended to be radially unstable

although the jet tip was composed of cohesive segments. The .015-
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inch wall liner(Test946-8) produced a jet tip so badly dispersed
that it was not recorded on the radiograph. The velocity of
10.81 km/sec which is listed in Table VII was for the slower
elements of the jet.

These tests showed that it is possible to achieve high
jet velocities from 70° nickel liners by employing comp.B/octol
bi-explosive charges and relatively thin wall liners.

2. 70 Degree nickel liners with octol/PBX 9404 bi-
explosive charge: The 70° nickel liners with .030-inch wall
thicknesses were also tested in octol/PBX 9404 charges. This
charge with octol as the inner explosive is capable of delivering
more energy to the shaped charge liner than the comp.B/octol charge.

The PBX 9404 explosive used for the outer charges for
these tests is composed of 94% HMX, 3% Nitrocellulose, and 3% CEF
(tris 8-chloroethylphosphate). The outer charges were fabri-
cated at the Ballistic Research Laboratories by first pressing
the powdered explosive into 6-inch diameter billets then machining
them to the required configuration. When the outer charges were
assembled to the inner charges (which were cast at Firestone's
test facility) it was found that there was a slight mismatching.
The thick end of the outer charge extended beyond the liner base.
The units were then removed and machined in a remote control
drilling fixture. Because the drilling fixture had been designed
for other purposes it was difficult to machine the explosive to
close tolerances. The result of the face-off operation was to
make the units shorter than desired. One of the units in parti-
cular was faced-off too short; as a result when it was assembled
to the charge there was a .lOS-inch gap between the adaptor plate
and the PBX 9404 explosive as shown in Fig. 18. This is mentioned
because it is thought that the air gap may have had some effect
on the shape of the jet. The other outer charges also failed to
contact the adaptor plate_ however_ the gap was only a nominal
.038-1rich. Cohesive jets with velocities of 11.87 km/sec were
produced. A radiograph of the jet for Test 939-5 is shown in
Fig. 19. Thus, it is seen that the octol/PBX 9404 bi-explosive
charge increased the jet tip velocity from 10.3 km/sec (for comp.B/
octol) to 11.87 km/sec. It must be emphasized that this was only
the jet tip velocity and that the greatest part of the jet was
moving at lower velocities.

3. 70 Degree Forma iron liners with comp.B/octol bi-
explosive charge: Cohesive iron jets were produced by the .030-
inch and .0SO-inch wall thickness liners with Jet tip velocities
of ll.1 km/sec(Test 924-8) and 9.5 km/sec(Test 924-9) respectively.
This was the first time a cohesive iron jet had been observed at
such high velocities. This provided a positive demonstration that
liner cone angle was important in producing cohesive Jet material
since 50 ° Forma iron liners with jet velocities of 10.7 km/sec
and ll.7 km_ec were not cohesive.
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4. 70 Degree Forma iron liners with comp.B/PBX 9404
and octol/PBX 9404 bi-expT_i-ve charges: Three tests were con-
ducted with the .030-inch wall thickness liners. One was tested
with the comp.B/PBX 9404 charge and two with the octol/PBX 9404
charge; cohesive jets with tip velocities of 12.2 km/sec (Rd.
939-1) and 12.47 km/sec (Rd. 939-4) respectively were obtained
from the two types of bi-explosive charges. A radiograph of the
latter jet is included in Fig. 19 (Rd. 939-4).

It is interesting to compare the effective detonation
rates and energy coupling angle for the comp.B/PBX 9404 and the
octol/PBX 9404 charges as follows:

Bi-Explosive
Charge

Effective (1)
Detonation Rate

(km/sec)

Energy (2)

Coupling Angle 8

(degrees)

comp.B/PBX 9404

octol/PBX 9404
I_. 7 24.4
13.2 31.3

(i) Rate at which a plane wave would have to move

to sweep the liner wall in the same time as a
conical wave.

(2) Angle between conical wave front and liner wall.

It is seen that even though the comp.B/PBX 9404 charge

had a higher effective detonation rate and more favorable angle_
the octol/PBX 9404 jet velocity was greater. This shows that the

energy of the inner explosive is a dominant factor (since octol

is more energetic than comp.B).

The jets from bi-explosive charges with PBX 9404 outer

charges appeared to be composed of two sections; a small diameter

high velocity section followed by a larger diameter lower velocity
section. This effect was especially evident for Rd. 939-1 as seen

in Fig. 20. Since Rd. 939-1 had a .lOS-inch air gap between the
outer charge and adaptor it is possible that the somewhat u_usual

jet configuration is related to the air gap. One effect that the

air gap would produce would be to allow an ambient pressure rare-

faction wave to move into the high pressure gaseous explosion
products as soon as the detonation wave reached the bottom of the

charge. This would tend to reduce the impulse given to the lower

end of the liner and reduce the velocity of the jet elements
coming from the bottom of the liner. Consideration of this effect

_ _u ou on_ u_ u± iron ada ors instead of aiumi_um

adaptors for certain charge designs.

m
Two significant results were observed from these tests.

First,it was shown that cohesive iron jet material could be

produced at velocities as high as 12.47 km/sec. Secondly, it was
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shown that high jet velocities could be achieved from large angle

liners by the employment of waveshaping.

5. Peripheral initiation tests with 70 degree Forma

iron liner: The charge configuration for this test was that of

the 70 ° bi-explosive charge except that the inner charge and outer

charge were both octol; thus_ no conical detonation wave would be

expected to form. Because the explosive below the waveshaper

would be initiated from a point (considering a cross-section of

the charge) at the outer radius of the waveshaper, the liner would

be swept by a spherically expanding wave. The sweep rate would

be greatest at the liner apex, then it would decrease as it moved
down the liner.

It is seen in Table VII (Rd. 924-7) that the jet tip

velocity was equal to that obtained with the comp.B/octol bi-

explosive charge. At first sight this might appear to be a good

approach to the problem of achieving high meteoritic simulator

velocities (historically, this technique was used many years ago
in shaped charge warhead studies). There are two reasons why

the peripheral initiation method is not considered as good as

the bl-explosive charge approach:

i. The rate at which the detonation wave would sweep

the liner wall would not be constant, thereby intro-

ducing a velocity gradient into the jet.

2. Since the comp.B/octol bi-explosive charge pro-

duced a jet tip velocity equal to that from peri-

pherally initiated octol, it is possible to obtain a

greater velocity by utilizing an octol/HMX charge

where octol is the inner explosive.

Conclusions - conical liner tests: It was found that jet

tip velocities as high as 12.47 km/sec could be achieved (with 70 °

iron liners) by use of bi-explosive charges. This demonstrated

the effectiveness of waveshaping in producing high jet velocities

with large cone angle liners. A more important result was that

the jet material from 70 ° liners was cohesive. There was no

evidence of radial dispersion of the jet material. Prior to these
tests iron had not been observed in a cohesive form above 9.4

km/sec and even the latter velocity level was achieved only by

using a special electron beam melted iron. This demonstrated the

effectiveness of employing large angle liners to achieve jet in-

tegrity.

Hyperbolic liner tests. - The conical liner tests had

established that liners with cone angles in the range 50 ° to 70 °

were capable of producing cohesive jet material with velocities
as high as 12.5 km/sec. The problem now was to produce an integ-

ral Jet, one exhibiting no radial or axial dispersion.
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Work done on Contract NAS1-5212 had shown that an integral

jet could be produced from a conical liner by keeping C/M nearly

constant along the charge-liner axis. (The C/M is defined as the

ratio of the explosive charge mass to the metal mass propelled by

the explosive• In this application the ratio of the charge cross-

sectional areas_measured in a plane perpendicular to the charge-

liner axis, is multiplied by the ratio of the explosive to liner
material densities to obtain the C/M ratio.) Both the explosive

charge area and the liner area were controlled for the design

developed on contract NAS1-5212. It was required that C/M remain

constant. This meant that both the charge and liner wall cross-

sectional areas were required to remain constant at all points

along the liner axis (so that their ratio would be constant). It
was found that when a liner with a conical exterior is required

to have a constant cross-sectional area, the inside surface of the

liner had to be hyperboloid. That is_ it is generated by revolv-

ing a hyperbola about its axis of symmetry. Liners designed on
this principle were referred to as hyperbolic liners. The cherge

designs under discussion also required that the external charge

surface be generated by a hyperbola in order to produce a constant

cross-sectional charge area. In practice, the hyperbolic surface

for the explosive was approximated by a conic surface which caused

a relatively small variation in C/M. The resultant shaped charge

design produced an integral jet. Thus_ it was shown that an

integral jet could be produced by controlling C/M.

It was not practical to modify the external charge config-

uration for the bi-explosive charge• The C/M ratio had to be

controlled by varying only the liner wall cross-sectional area.

If it is required that the ratio of explosive charge cross-sec-

tional area (between the charge's cylindrical exterior surface
and its conical interior surface) to the liner wall cross-sectional

area remain co nstant_ then it is found that, again, a hyperbolic
interior surface is required for the liner. However_ in this case

the shape of the hyperbola (which generates the interior liner
surface) is such that the cross-sectional area of the liner

increases from liner base to liner internal apex.

The fact that it was possible to achieve a constant C/M by

employing a hyperbolic liner did not constitute a solution to

the problem of forming an integral jet. Experience on contract

NAS1-5212 and further studies of the hyperbolic charge conducted

on this project (discussed later in this report) showed that a

constant C/M condition does not always assure an integral jet.

The shaped charge jetting process is a very complex one and the

constant _/_"" c_iterion, while effecting a very good f_r_ approxi-

mation to the required design, is not a sufficient condition for

assuring the formation of an integral jet. Realizing this, it

was decided to approach the problem by starting with constant
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cross-sectional area hyperbolic liners, then making various modi-
fications to the liners so that their cross-sectional areas would

vary, thereby varying C/M.

A discussion of the liner design and results of tests with

50 ° , 60 ° and 70 ° liners are given in the following sections.

Hyperbolic liner design: A study was made of the liner wall

cross-sectional area variations and the resultant C/M variation

which could be achieved by modifying constant cross-sectional

area liners. The reason for taking this approach was that it

minimized the templates needed to study a number of C/M variations.

This reduced the cost, but more important, it eliminated the time
required to obtain the templates.

Two ways of modifying a constant cross-sectional area liner

are shown in Fig. 21. If material is removed from the outer sur-

face of the liner by making a tapered cut from liner apex to

liner base as shown in Fig. 21a, the liner cross-sectional area
varies as shown in Fig. 22a where the base wall thicknesses shown

are those which exist after the cut is made. The explosive charge

cross-sectional area variation is shown in Fig. 23. The result-

ant C/M obtained by dividing the explosive charge area in Fig. 23

by the liner areas shown in Fig. 22a is shown in Fig. 24a for

type (a) liner area variation. The C/M curves shown in Fig. 24a

do not take into account the fact that there are two explosives;
it assumes a homogeneous explosive. (The effect of introducing

weighting factors to account.for the two explosives was investi-

gated and found to produce a minor effect on the C/M curve.) It

is seen in Fig. 24a that various degrees of C/M variation can be

achieved depending on the amount of material removed from the

outer surface of the liner. This includes one modification which

produces a constant C/M condition. Thus, it is seen that a range

of C/M variations can be studied for the same hyperbolic interior
surface.

The second way of modifying constant cross-sectional area

liners is to cut material off the outer surface parallel to the

outer surface as shown in Fig. 21b. This causes the cross-section-

al area of the liner to increase linearly from base to apex as

shown in Fig. 22b. The C/M ratio produced by this modification is
shown in Fig. 24b. It is seen that some of the C/M curves have

maximum values between the apex and base of the llner. The latter

feature might have been cause for rejection of this modification

were it not for the fact that the original hyperbolic liner design

discussed in detail later exhibited this general type of C/M

curve and it formed an integral jet.

Liner designs of both modification were tested. In dis-

cussing tests with these designs in following sections of this

report, the first type (Figs. 21a, 22a, 24a) is referred to as

4
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the Non-Linear Wall Area Design and the second type (Figs. 21b_

22b, 24b) as the Linear Wall Area Design. That is, the liner type
is described in terms of its liner wall cross-sectional area

variation. The degree of liner wall cross-sectional area

variation is given in either of two ways. One is in terms of the

ratio of cross-sectional area at the internal apex to the cross-
sectional area at the base (where the area is measured in a plane

perpendicular to the liner axis). Another measure of the degree
of cross-sectional area variation is the wall thickness at the

base (measured in a direction perpendicular to the liner axis).
Most of the liners studied were modified from constant cross-

sectional area designs which had .030-inch wall thicknesses at

the base. Thus_ if for example the modified design had a .020-inch

wall thickness at the base, this would represent a greater degree

of variation than a modified design which had a .025-inch wall
thickness at the base.

Iron hyperbolic liner tests: The major effort to produce a

12 km/sec integral jet pellet was made with iron. There were

two reasons for this. First, an iron meteoritic simulator was

considered to be of greater importance thananickel one. Secondly,
nickel is more prone to form a cohesive jet than iron and it was

assumed that if an integral iron jet could be obtained, then the

subsequent development of an integral nickel jet would be rela-

tively simple.

The sequence of liner designs tested was dependent on the

availability of various types of iron. In a later section of

this report the results of a liner material study are presented.

This work was carried on concurrently with liner development and

was almost exclusively devoted to obtaining a form of iron which

would form an integral jet. In the latter work it was found

that the purity and grain size of the iron were important to

cohesive jet formation. When plans were made to begin the testing

of iron hyperbolic liners, the best form of iron (electron beam

melted iron) as determined by the materials study was not yet

available. Therefore_it was decided to conduct the initial tests

only with 70 ° liners, since tests with conical liners had demon-
strated that the greatest chance of achieving a cohesive jet would

be with the large cone angle liners. Later, when the EBM iron

became available, a liner cone angle study was made where _0°_ 60 °
and 70 ° liners were tested. A type of iron comparable in purity

to EBM iron and another exceptionally pure (99.995% pure) form of

iron were also tested in 70 ° liner designs. Details of the tests

are presented in the following sections.

i. Liner wall area variation studies with 70 ° liners:

The liner material used for these tests was Forma iron_ the same

type of iron as used for the conical liner tests previously dis-

cussed. However_ the Forma iron used for these liners was from
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a different lot of material (Appendix C, lot 73) than that used

for the conical liners. Its grain size was generally larger and

not as uniform as the first lot.

Both non-linear and linear cross-sectional area variations

were tried, each with two degrees of variation, as shown in Figs.

25, 26, 27, and 28.

The liners were cast in comp.B/octol bi-explosive charges

which were assembled with lead waveshapers and aluminum adaptors.

The test results are summarized in Table VIII.

It was found that the attempt to reduce the velocity gradient

was successful,but that none of the liners produced a cohesive

jet. A study of the radiographs showed that the non-linear wall

area liners produced a jet with some residual positive velocity

gradient and that the linear wall area liners tended to produce

a slight reverse velocity gradient. Jets from both liner types
tested in air (rather than vacuum) are shown in Fig. 29. Vacuum

radiographs of the other non-linear area variation liners (Rds.

946-5_ 946-6) showed the jets to be severely fragmented.

Two additional tests were conducted with the linear design

liner where the liner wall thickness at the base was .O20-inch.

The ratio of the liner cross-sectional area at the internal apex

to that at the base was made to be 1.75-inches and 2.OO-inches by

use of special templates. The main difference between these two

liners and the other linear designs tested was that wall thickness

was generally greater due to the use of the special templates.
The results are shown in Table IX where it is seen that both liner

variations failed to produce cohesive jets. The condition of

the jets was much worse than for those described in Table VIII.

It was concluded that the non-linear area variation design

was superior to the linear area variation because the latter

design tended to produce a reverse velocity gradient_ which

experience has shown_ will cause jet fragmentation. It is be-

lieved that the fragmented jets formed by the non-linear area
variation liners were due to the Forma iron liner material. That

is_ tests conducted on the Nickel and Iron Material Properties

Study phase of the project show that Forma iron with a carbon
content of .04% and a grain size of AST--T-_ to ASTMI did not form

cohesive jets as readily as EBM iron with a carbon content of

.01% and a grain size of ASTM6 to ASTMS. Thus_ it is seen that

both the purity and grain size of this lot of Forma iron were

not conducive to cohesive jet formation.

2. Test of constant C/M, 70 ° liners: The liners for this
test were designed with a hyperbolic interior that would produce

a constant C/M. A drawing of the liner is shown in Fig. 30.
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The liners were made from Ferrovac Iron (Appendix C, lot 79B),

which is comparable in purity to EBM iron. They were tested in

both comp.B/octol and octol/HMX bi-explosive charges. Polyurethane

waveshapers_ as shown in Fig. lO, were used in these charges.

The results are shown in Table X where it is seen that a

velocity of 11.3 km/sec was achieved with the octol/HMX bi-

explosive charge (Rd. 974-3). None of the jets formed were co-

hesive. A radiograph of the jet from the comp.B/octol charge

which was tested in air (Fig. 31, Rd. 974-1) shows that the jet
definitely had a reverse velocity gradient since it is seen to be

shorter in the second view relative to the first view. Radiographs
of the jets from the octol/HMX charges tested in vacuum show the

jets to be severely fragmented and dispersing radially.

It was concluded that the 70 ° constant C/M liner design will

not form a cohesive jet in the existing bi-explosive charge design.

In fact, the results just presented along with those presented in
the previous section (tests of non-linear and linear liner area

variations) show that a liner design which produces a C/M that

increases from liner base to liner apex is required. Furthermore_
it appears that the shape of the C/M curve is important since the

non-linear area variation tended to produce a better jet than the
linear area variation.

3. Tests of 50 °, 60 ° and 70 ° EBM iron hyperOolic liners:

The purpose of these tests was to determine the best cone angle for

achieving a cohesive iron jet with a velocity of 12 km/sec or

better, using electron beam melted iron. Testsalready conducted

with conical liners had indicated that it might be difficult to

obtain a cohesive jet with a 50 ° liner. Furthermore, tests with
hyperbolic 70 ° iron liners had failed to produce a cohesive jet

It was believed that the chance of producing cohesive jets in

these tests was much greater because EBM iron would be used as the
liner material.

The liner design chosen for these tests was the non-linear
wall area modification with the 1.48 area ratio. The C/M for this

design is shown as the .020-inch base wall thickness curve in

Fig. 24a. This design was chosen because previous tests showed

that it tended to produce an integral jet, although the jet exhib-

ited some velocity gradient. It was reasoned that it would be

better to produce a jet with a slight positive velocity gradient

than to choose another design and risk getting a reverse velocity

gradient. Liner drawings are shown in Figs. 32, 33, and 25.

The EBM iron used for the liner material was of the same

general chemical purity as the original piece tested in the

materials study phase of this project. However, the grain size of
the material was extremely large and variable in size. The EBM

29



iron had been received in the form of two billets 5-inches in

diameter by lO-inches long (Appendix C, lot 74A). All but a 3-

inch length of the material was hot forged to 2-1/2 inch diameter

bars and a_nealed. The forging was done by people who were spec-

ialists in working with pure iron. Unfortunately, the resultant

grain structure varied greatly in size, having a nominal value of

ASTMI (Appendix C, lot 74B). Although there was no specific data

available at the time to prove it, it was felt the large grain
size would be detrimental to cohesive jet formation (later tests

strongly indicated the small grain size is an important factor in
cohesive jet formation). Since it was not possible to obtain

small grain size EBM iron in a reasonable time, it was decided to
use the existing material (lot 74B), because it was the best
available when the liners were machined.

The liners were tested in both comp.B/octol and octol/PBX

9404 hi-explosive charges assembled with lead waveshapers and

aluminum adaptors. (The PBX 9404 outer charges were supplied by

Ballistic Research Laboratories, Aberdeen Proving Ground.)

The test results are summarized in Table XI. Velocities in

the range 10.54 km/sec to 11.88 km/sec were achieved, however
none of the jets formed were cohesive. A trend was observed fin

keeping with previous results) where the jets from the 70 ° liners

showed the greatest degree of stability and the jets from the 50 °

liners showed the least, as shown in Fig. 34. Furthermore, for

each cone angle the jets from the comp.B/octol charge tended to be

more stable than the jet from the octol/PBX 9404 charge. This is

shown in Fig. 35 for jets from 60 ° angle liners. The latter
effect is attributed to the greater jet velocity produced by the

octol/PBX 9404 charge. This corroborates previous observations

that for a given liner angle, the jet integrity is related to the

jet velocity, or more precisely, the jet integrity is related to

the condition required to produce a higher velocity.

The results as presented in Fig. 34 show that the 70 ° liner

came very close to producing an integral jet. It is believed that

there is a good probability of producing an integral jet if a fine

grained pure iron is used for the liner material.

4. Effect of pure iron on 70 ° liner jet: During the

course of the liner material study, a source of extremely pure
iron in machinable bar form was located. It was found that

Battelle Memorial Institute, Columbus, Ohio, prepares the pure

iron by electron beam melting electolytic iron under vacuum con-

ditions, then achieving further refinement by a floating-zone-

melting technique. The iron produced by this technique is very

expensive because of the time it takes to purify it and the de-

tailed analysis needed to determine its purity. One bar of this

iron was supplied, free of charge, for use on this project by the
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American Iron and Steel Institute. The bar was 1-3/4 inches in

diameter by 6-3/4 inches long. It was identified as Bar 102. A

detailed analysis of its impurities (supplied by Battelle Memorial

Institute) is given in Appendix C, lot 81.

The purpose of testing this iron was to determine whether

extreme purity would produce a cohesive jet. Tests already

conducted on the Nickel and Iron Material Properties Study had

shown that the purity of the iron was important. However, there
was also strong evidence that the material grain size and uniform-

ity was a significant factor in cohesive jet formation. The

Battelle iron, while extremely pure, had a very large grain struc-

ture evidently related to its purity. For example, one grain ob-

served in a macro-etched sample of the material was approximately

.20-inch by .60-inch in cross-section. It was reasoned that if a

cohesive jet were formed from this material it could be concluded

that the effects of purity are of prime importance. If a cohesive

jet were not formed, then the effects of grain size must be con-

sidered equal in importance to material purity.

Tests were conducted using 70 ° liners with the same non-
linear wall area variation used in the tests described in the

previous section. (See Fig. 24a, .020-inch wall). Since the iron

bar was only 1-3/4 inches in diameter (while the liner diameter

for the bi-explo_ive charge was 2-inches) it was necessary to

fabricate the liners as a two-piece unit. As shown in Fig. 36
the lower 1/4-inch of the liner was made of EBM iron from the

same lot of material used for the cone angle tests (lot 74B), as

described in the previous section. There was no reason to believe
that the jet integrity (in regard to radial stability) would be

effected by the cemented joint. Four liners were manufactured,
two with the Battelle iron/EBM iron material combination and two

with EBM iron being used for both top and bottom sections of the

liners, where the latter liners were used as controls.

The liners were cast in octol/HMX bi-explosive charges

assembled with polyurethane foam waveshapers and aluminum adaptors.

One of each type was radiographed just after the jet formation

process was completed (in order to see whether anything unusual

occurred due to the two-piece design) and one of each was tested
in vacuum.

The results are given in Table Xll where it is seen that the
average velocity obtained was over ii km/sec. Radiographs of the

i_t_ (vi= 37 ] show thst the Battelle iron jets were not cohesive;

however, they did exhibit a greater degree of stability thaa the

EBM iron jets. This is a judgement based on the fact that there
was less fine debris surrounding the major jet pieces for the
Battelle iron.

31



It was concluded that the greater purity of the Battelle
iron effected some improvement in jet material cohesiveness but
that it was not significantly superior to EBM iron under the
conditions of the test. It is believed that these results, along
with those presented in the materials study section of the report
reveal the importance of grain size on jet integrity.

5. Conclusions - Iron hyperbolic liner tests: None of
the iron hyperbolic liners tested formed an integral jet. The
70° liner designs (as opposed to 50 ° and 60 ° designs) came closest
to forming integral jets in that large cohesive fragments of jet
material were formed. It is believed, based on the test results
just presented and those obtained on the Nickel and Iron Material
Properties Study, that integral jets can be formed if the proper
iron is used. The iron should be as pure as the EBM iron used for
some of the tests discussed above and its grain size should be
uniform and in the size range ASTM6 to ASTM8. It is believed
that, using the proper iron, integral jets can be formed with
either 60 ° or 70° liner designs.

Nickel hyperbolic liner tests: The development of a liner
for producing a nickel jet was not emphasized during the major
portion of the project because iron was considered to be of prime
importance, and because it was felt that once an iron jet was
developed, the nickel liner development would be relatively simple.
About four weeks before it became necessary to terminate work on
the project it became clear that further development of an iron
liner would require the use of a fine grained pure iron (comparable
in purity to EBM iron). Since it was not possible to obtain this
material and machine liners from it in the short time remaining,
it was decided to concentrate on the development of a nickel liner.

Due to the short time available the test program had to be an
abreviated one where the liner designs to be tested were finalized
at the beginning of the program.

All of the liners tested were of the 50 ° hyperbolic type.
The decision to test 50 ° liners represented somewhat of a gamble
in that there would be less chance of forming a cohesive jet with
a 50° rather than a 60 ° or 70° liner. However, the best chance of
achieving a jet velocity of 12 km/sec was with the 50° llner;
therefore, it was decided to evaluate liners with this angle.
The test results are described in the following sections.

1. Initial 50 ° hyperbolic liner tests: Only three liners
were fired for this test series. The tests showed the effect of
modifying the liner design and the effect of changing the explo-
sives. The data for these liners are given in Table XIII.
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It is seen that the first shot (Rd. 950-1) tested the con-
stant cross-sectional area hyperbolic liner (Fig. 38) in the
comp.B/octol bi-explosive charge. The jet radiograph from this
charge is included in Fig. 39_ where it is seen that the jet is
segmented but cohesive. The second shot of this series (Rd. 950-2)
was made with a hyperbolic liner modified to reduce the velocity
gradient (See Fig. 24a, curve for .020-inch wall liner). This is
the same liner design as shown in Fig. 32. The resultant radio-
graph, included in Fig. 39_ shows that a reduction in velocity
gradient was accomplished and that the jet material was cohesive.
The charge for the third shot in the series (Rd. 950-3) incorp-
orated the same liner modification as did the charge for Rd. 950-2,
however_ the bi-explosive charge was octol/HMX. The resultant
jet exhibited about the same degree of jet segmentation as the
previous shot (Rd. 950-2); however, it is seen in Fig. 40, where
the jets for Rd. 950-2 and Rd. 950-3 are compared, that the jet
material is not as stable. A close examination of the radiograph
reveals that the jet produced by the octol/HMX bi-explosive charge
is beginning to fragment.

It was concluded that the hyperbolic liner with the .020-inch
base wall thickness was very close to the design which would
produce an integral jet. It was also concluded that the jet from
the octol/HMX charge, although about 1/2 km/sec faster than that
from the comp.B/octol charge, was borderline in terms of jet
cohesiveness.

2. Effect of wall area variation and adaptor materials on
nickel jets: The data presented in this and the following section
are the result of the abbreviated attempt to finalize a nickel jet
during the last month of the project. As was stated earlier, it
was decided to employ the 50° design for the final tests even
though the jets from these liners tended to exhibit borderline
integrity at velocities near 12 km/sec.

Liners with base wall thicknesses of .020-inch, .Ol8-inch
and .Ol6-inch were evaluated. The resultant C/M variations for

these designs are shown in Fig. 24a_ where it is seen that the

.Ol6-inch base wall thickness modification represented a constant

C/M condition (it was decided to test the constant C/M conditions

for the 50 ° nickel liner even though the 70 ° constant C/M iron

liner had failed_ since the liner angle and liner material were
different).

lqn-k.h :'k:_l _nrl _lnm'_nilm _p%.n_ w_ _v_In_t_ in thin t_t

series. All previous charges had been assembled with aluminum

adaptors. The reason for trying steel adaptors was as follows.

Shaped charge experience has shown the explosive confinement has

a significant effect on the liner collapse in that the total impulse

given to the liners (by the explosive) is enhanced by confinement.
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Confinement produces this effect by delaying the arrival of the
rarefaction wave (in the gaseous explosive products) at the liner

wall, thereby, allowing a greater impulse to be delivered to the
liner. In the present case the hyperbolic liner is subcaliber in

the sense that explosive surrounds the liner at its base. The

impulse given to the lower part of the hyperbolic liner depends

on how long the adaptor delays the entrance of a rarefaction wave

into the gaseous explosive products. It was reasoned that since

the 50 ° hyperbolic liner with the .020-inch base wall thickness
exhibited only a small velocity gradient (see previous section),

a change in end confinement might provide just enough additional

impuse to the base of the liner to eliminate the velocity gradient.

Iron was chosen because it possesses a much higher shock impedance
than aluminum.

The test data for this group of rounds are summarized in
Table XIV. It was found that the use of the iron adaptor produced

an integral pellet for one test but not for a second identical

test. The integral jet formed with the use of the iron adaptor is

compared with a segmented jet produced by a charge with an alum-

inum adaptor in Fig. 39 (Rd. 973-2 and Rd. 950-2). Radiographs

comparing the jets from two identical charges with iron adaptors

are shown in Fig. 41. It is seen that by using the iron adaptor

the velocity gradient was eliminated; unfortunately the jet

integrity was borderline.

The data in Table XIV shows that the .Ol8-inch base wall

thickness liners (Rds. 976-1, 976-2) were tested with aluminum

and with iron adaptors as were the .O16-inch wall liners (Rds.

976-3, 976-4). Velocities in the range ll.8 km/sec to 12.1 km/sec

were obtained with these four charges, however, none of the result-

ant jets were cohesive.

It was concluded that it is possible to form a cohesive

nickel jet in the velocity range ll km/sec to 12 km/sec; however,

the jet integrity is borderline for the designs tested. It is

believed that the shape of the C/M curve is important. That is,

the failure of the charges to form cohesive jets may be due to a

slight reverse velocity gradient, causing the jet to be axially

compressed and thereby fragmented.

3. Evaluation of imhibited 50 ° hyperbolic liners: The

final tests were conducted with inhibited liners. The purpose of

the inhibitor was to isolate the jet from the non-steady state
debris following it. It was demonstrated on contract NAS1-5212

that thickening the base of the hyperbolic liner was a possible

method of inhibiting. Two degrees of inhibiting were tried as

shown in the liner drawings in Figs. 42 and 43. It should be

noted that this method of inhibiting the Jet differed from that

tried before because the metal for the previously tested liners
had been added to the outside of the liner. This was not possible
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for the present design because the resultant liner could not have

been assembled to the bi-explosive charge (the outer charge

configuration could not easily be changed).

Two liner wall area variations were tried with each of the

two inhibitor types. They were the .O16-inch and .020-inch base

wall thickness modifications (the C/M variations shown in Fig. 24a

hold for these designs except in the inhibitor sections of the
liners). The .O16-inch base wall thickness liners were assembled

with aluminum adaptors and the .020-inch designs were assembled

with steel adaptors. The aluminum adaptors were used for the
.Ol6-inch design liners because the results of the tests described

in the previous section indicated that the steel adaptor may have

induced a reverse velocity gradient in the jet. The steel adaptor

was used for the .O20-inch design because_in at least one instance_

the integral jet had been produced with this combination.

There was reason for expecting that the inhibiting process

might improve the jet integrity. This is based o.n results of tests
conducted with 30 ° conical iron liners o.n contract NAS1-5212 where

the use of a Lucite inhibitor improved the jet pellet integrity.

The latter type of inhibiting technique differs in detail from

that being discussed; however, generally the effect on the jet

would be expected to be similar.

The results of the tests are given i.n Table XV. Velocities

in the range ll.7 km/sec to 12.33 km/sec were observed; however,

none cf the jets were cohesive. Radiographs of jets from each
aesig.n are shown in Fig. 44 where it is seen that each jet frag-

mented into a few large pieces surrounded by a cloud of fine debris.

P

4. Conclusions - 50 ° nickel hyperbolic liner tests: The

test results show that 50 ° nickel hyperbolic liners assembled in

bi-explosive charges are capable of forming jet material with a

velocity i.n excess of 12 km/sec. The jet material, except for one

case_ was in a fragmented form. The fragmented jets were composed
of relatively large cohesive pieces surrounded by clouds of much

smaller particles. This kind of jet degradation is considered to

be borderline. A modification in the shape of the C/M curve might

provide a condition where the jet would be integral. The use of a

fine grain .nickel should also improve the jet condition. However_

it is believed that the best approach to forming a cohesive jet
would be to increase the liner angle to 60 ° . There is ample

evidence that jet integrity would be improved by a larger cone

angle. There would be some loss in jet velocity; however, this

could be overcome by reducing the liner wall thickness.

Conclusions - shaped charge liner development. - The results

of the liner development tests show that it is possible to form

cohesive jet material at velocities in the neighborhood of 12 km/

sec with liner cone angles in the range 50 ° to 70 °. However, the
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task of forming an integral (radially and axially stable) jet

requires further development work. The following is a summary of

the results obtained, and observations made, during the liner

development program:

i. Cohesive iron and nickel jet material was produced

with velocities as high as 12.5 km/sec. This material

was formed as cohesive segments and/or fragments, but
not as an integral jet.

2. An integral nickel jet with a velocity of 11.25

km/sec was produced by a 50 ° hyperbolic liner. The

jet integrity was apparently borderline because a

second test of the same design produced a jet which

was splitting into three pieces.

3. It was demonstrated that high velocity jets can be

formed with cone angles as large as 70 ° . Jet tip
velocities as high as 12.5 km/sec were achieved with

70 ° liners.

4. It was demonstrated that increasing the cone angle

improves jet integrity. This was best demonstrated

for iron liners where cohesive jet material was pro-

duced with velocities as high as 12.5 km/sec with 70 °

liners, whereas previously cohesive iron jets were not
observed above 9.4 km/sec with 40 ° liners.

5. It was found that the production of an integral jet

(radially and axially stable) with the bi-explosive

charge will require fine adjustments in the existing

shaped charge design. This was demonstrated by the

fact that changing the adaptor material from aluminum

to iron reduced the jet velocity gradient from about

0.2 km/sec to zero.

In conclusion, it is believed that the results were encour-

aging. It was demonstrated that it is possible to control the

shaped charge jet in a bi-explosive charge and that i_ is possible

to produce an integral jet at velocities near 12 km/sec.

Nickel and Iron Material Properties Study

The effects of liner material chemical and mechanical pro-

perties on jet integrity were studied because there were indica-
tions during the work on Contract NAS1-5212 that both material

purity and grain size were important. Tests were conducted with

both nickel and iron_ however, the main effort was made with iron.

This was because iron was considered more important than nickel

as a meteoritic simulator and because iron has proven to be more
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difficult to jet in cohesive form. All of the tests discussed in
this section of the report were conducted with 40° hyperbolic
liners (Fig. ll) assembled in the charge design shown in Fig. 45.
This charge was chosen because a large amount of test data was
available from tests with this design conducted on contract NAS1-
5212. Octol was chosen as the explosive rather than comp.B
because it produced the most severe effects on the jet, i.e.,
previous tests showed that 1020 steel and ingot iron would not
form a cohesive jet when this explosive was used with 40 ° hyper-
bolic liners. Thus, it was assumed that if one of the iron types
to be evaluated was superior to those previously tested, the jet
integrity would be improved.

The nickel liner material was evaluated for two hardness
conditions only. A total of six iron types were evaluated, where
some iron types were tested in two different hardness and grain
size conditions. The metallurgical data for all of the materials
tested are given in Appendix C where each set of data is presented
sequentially in terms of its Firestone lot number.

Nickel liner material tests. - The purpose of this test was

to evaluate the effect of material hardness on jet integrity.
Nickel 270 had been purchased for use on the meteoritic simulator

program. It was the purest nickel commercially available.

Liners were made from the nickel 270 in both the as-received

and annealed condition. It had been hoped that a difference in

grain size would be obtained. However, the grain size of the as-

received material was very large and subsequent annealing changed
it very little. The annealing process changed the hardness from

Rockwell B52 to Rockwell B23 (Appendix C, lot 62, lot 62B).

Two liners were tested with the nickel 270 in the as-received
condition and two with the nickel 270 in the annealed condition.

The test results are included in Table XVI along with those from

other liner material properties tests. Radiographs of the jets
for both nickel hardnesses are included in Fig. 46. It is seen

that the harder liner material (as-received) produced an integral
jet. Identical results were obtained from both liners for each of

the two material conditions. Thus, it was demonstrated that the

form of the shaped charge jet was dependent on the condition of
the parent liner material.

o

The fact that the jets from the annealed nickel 270 liners

segmented shows that there was a small velocity gradient inherent
iL_ .... j ......one ets when they were formed. _-- --'-_ _--

reason the jets from the as-received liners did not segment was
due to the greater strength of the parent liner material. This

would imply that the jet material is acting plastically as it is

segmented and that mechanical properties are important in jet
formation.
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It was decided, based on the foregoing results, to use the
nickel 270 in the as-received condition since it was conducive to

forming an integral jet when the shaped charge liner is a hyper-

bolic type. This decision was based on the fact that hyperbolic

type liners were being used in the Shaped Charge Liner Development

Program. It should be recognized that the decision to use the as-

received nickel 270 was made only in regard to the production of

an integral jet. If one were attempting to form a long segmented
jet the annealed nickel 270 might be a better choice.

Iron liner material tests. - The main effort in the liner

material study was the evaluation of various irons. The results

of previous tests with 1020 steel and ingot iron had shown that

chemistry might be an important factor. Also, there had been
some indication that the material grain size might be important.

An effort was made to obtain types of iron which contained a

minimum of impurities and possessed a small grain size.

The following is a list of the types of iron tested.

i. 1020 steel - commercial grade low carbon steel.

2. Ingot iron - this material as sold commercially

has a nominal carbon content of .04 per cent. It also exhibits a

mixed grain structure.

3. Form____aairon - this is an importe_ iron with a car°

bon content comparable to that of ingot iron. Two lots of this
material were purchased. The first lot had fine uniform grain

structure. The second lot, while being chemically the same, had
a mixed grain structure.

4. Electron beam melted iron - this material was also

obtained in two lots. The first lot was a sample donated to the

project by the ARMCO Steel Corporation. As received, it was an

extremely fine grain lO10 steel, where carbon was the only signi-
ficant impurity. Liners made from this material were first

rough machined, then sent to ARMC0 for decarburization by a special

technique developed by that organization. After decarburization,

the carbon content was .003 per cent.

The second lot of EBM iron was purchased from Airco
Temescal (the fabricators of the 1010 steel obtained from ARMC0)

in pure form with a carbon content nominally the same as

that just described. However, for this lot of material the grain

structure was unusually large; too large to classify in the ASTM
system.

h
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5. Ferrovac iron -. this material, made by the Crucible
Steel Corporation, had a carbon content comparable to that of EBM
iron. Its grain structure was smaller than the second lot of EBM

iron discussed above! however, it was still relatively large and
mixed.

6. Battelle pure iron - this material was the purest

form of iron obtained during this project. It was made by Battelle

Memorial Institute by first electron beam melting electrolytic

iron, then achieving further purification by a floating-zone pro-
cess. The sample, which was donated to the project by the American

Iron and Steel Institute, was 1.75-inches in diameter by 6.75-inches
long, and was 99.995 per cent pure. The grain structure was

extremely large, evidently due to the material purity. This iron

was not tested in the materials study phase of the project because
of it's limited availability and the limited diameter of the

sample. It was tested directly in the bi=explosive shaped charge

system and is discussed in the Shaped Charge Liner Development
section of the report.

Metallurgical details of the various materials are
given in Appendix C.

Effect of iron purity: The first series of tests were

conducted to determine the effect of purity on iron jet cohesive-

hess. The materials evaluated were 1020 steel, ingot iron as re-
ceived, ingot iron a_nealed, Forma iron and EBM iron. All mater-

ials were fabricated as 40 ° hyperbolic liners, Fig. ll, and cast
in octol charges, Fig. 45. Test data are included in Table XVI

(Rds. 922-7 through 922-18) and radiographs of the jets are shown

in Fig. 46. A study of the radiographs reveals that the jet

integrity improves in going from 1020 steel (Rd. 922-16) to EBM

iron (Rd. 922-12). In fact, the EBM iron jet, although axially

segmented, is seen to be radially stable. The jet segmentation is
attributed to a small velocity gradient.

m

In order to demonstrate more conclusively that an integral

EBM iron jet could be formed, a second EBM iron liner was cast in

a modified charge. This charge, discussed in the next section of

this report, eliminated a small velocity gradient which was in-

herent in the jets produced by the 40 ° hyperbolic liners (shown by

the a_nealed nickel 270 jets discussed above). The EBM iron jet

produced by the modified charge, shown in Fig. 46, Rd. 922-18, is
seen to be integral except for a small segment preceding the main

jet. This was the best iron jet produced du_ing this study.

The results of these tests indicate that iron purity is a

significant factor in jet integrity! however, in estimating the

effect of purity, one must also consider the effect due to grain

size. Since the EBM iron for these tests had the smallest grain

size of any of the materials tested, there is a strong possibility
that grain size affected the results.
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Effect of iron grain size: The purpose of this test was to
evaluate the effect of grain size on jet integrity using a pure
iron as the test material.

Ideally it would have been desirable to have taken a given
pure iron and modified it to produce a range of grain sizes in a
set of test samples. This is difficult to do, however, because
pure iron tends to form large grains. There are undoubtedly
techniques which could be used to achieve various grain sizes with
a given pure iron_ however, doing this would have taken more time
and effort than was available within the scope of the contract.
In view of the above, tests were conducted with the following
irons which were on hand:

i. EBM iron, as-received, lot 74A
2. EBM iron, forged and annealed, lot 74B
3. Ferrovac, as-received, lot 79.

The lot 74A iron, as-received, possessed a very large grain size
because it was processed differently than the first-tested lot 64
EBM iron. As stated earlier, EBM iron and Ferrovac were of
comparable purity. The grain sizes for the three items above were:

1. Too large to classify in the ASTM system
2. Mixed - ASTM1 to >,ASTM1
3. Mixed - ASTM3 to ASTM6

Thus, it is seen that although the test conditions were far from
ideal, a range of grain sizes in iron samples of comparable purity
was available for testing.

The test data are included in Table XVI and in Fig. 46 for
Rds. 922-19 through Rd. 922-23. The radiographs show that the

et integrity correlates directly with the grain size, Ferrovac
ASTM3 to ASTM6) giving the most cohesive jet and EBM Iron with

the largest grain sizes giving the poorest jet. If the result
for Rd. 922-18 (EBM iron, ASTM6-8) is included in this group, the
effect of grain size on jet integrity is seen to be even more
positively demonstrated.

Conclusions: It is believed that the results presented
above demonstrate the importance of both purity and grain size in
forming a cohesive iron jet.

The effect of purity was demonstrated when 1020 steel and
Forma iron, both of which possessed approximately the same grain
structure as the fine grained EBM iron (lot 64), failed to produce
cohesive jets while the EBM iron did produce them. The effect of
grain size was demonstrated when two types of EBM iron and Ferrovac
iron, all approximately equal in purity, yielded significantly
more coherent pellets for the smaller grained samples.
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It is felt that once a certain degree of purity has been
introduced into the shaped charge liner, grain size is the domi-
nant factor. This was demonstrated both in the test just des-
cribed and the results obtained with Battelle pure iron, discussed
in the Shaped Charge Liner Development section of this report.
The latter test compared EBM iron - lot 74B with Battelle pure
iron which had an extremely large grain structure. The results
showed that while the very pure Battelle iron improved the jet
integrity slightly, it was not much better than EBM iron. From
these results it is inferred that the high purity of the Battelle
iron could not compensate for its unusually large grain structure.

It was concluded that a fine grained iron of EBM purity
would be the ideai material for further iron jet development.

Charge Configuration Program

The effect of variations in explosive charge configuration
for hyperbolic type charges was investigated. The hyperbolic
charge which was developed on Contract NASI-5212 was designed to
produce a steady-state jet, i.e., an integral jet pellet which
would not segment due to a velocity gradient. The charge was
referred to as a hyperbolic charge because both the interior liner
surface and the exterior charge surfaces were generated by hyper-
bolic curves. The design criteria requires that the ratio of
charge cross-sectional area to liner cross-sectional area, measured
in a plane perpendicular to the charge axis, remain constant. It
is shown in Appendix D that this gives rise to the hyperbolic forms.

The hyperbolic charge, developed on Contract NASI-_212, did
not incorporate a true hyperbolic configuration for the exterior
charge surface; instead, the hyperbolic surface was approximated
by a conical surface. This approach was taken on the first design
tested for the sake of expediency and the charge produced integral
jets. Later, tests were conducted where the charge surface was
approximated by two conical surfaces. This was closer to the hyper-
bolic surface required by the design criteria. It was found that
for the latter case, the jets segmented into two pieces. The
maximum difference in charge radius between the charge which
produced the integral jet and the charge which produced the seg-
mented jet was only about .050-inch, or about a 4 per cent change
in charge radius. This demonstrated the sensitivity of the hyper-
bolic design to variations in charge configuration.

e_ect o_ cha_ge COL_fig'_a TM Or_ jets pro_uce_ by hyp e_bOliC
liners in order to determine the degree of sensitivity which existed.

This was considered important because, although the goal of this

project was to develop a hi-explosive charge with a cylindrical

exterior, it was planned to incorporate hyperbolic type liners in
the charge.



It was decided to evaluate both conical and hyperbolic
charge configurations. The conical surfaces were generated by

4o 6°lines which formed angles, (_), which were nominally 0 °, , ,

8 ° , 10°9 ', ll °, 12 ° and 13 ° with respect to a line representing a
cylindrical charge as shown in Fig. 47b. Two loading fixtures

were made for the ll ° design. Upon inspection it was found that

their actual measured angles were 10o57 ' and ll°16 '. The 12 °

design also differed slightly from the design value; actualthe

measured value was 11°59 '. The charge with _ of 10°9 ' was the

one which had produced an integral jet.

The hyperbolic charge surfaces were generated by requiring

that the explosive charge cross-sectional area vary linearly in

going from liner base to liner apex. It is shown in Appendix E

that this results in the requirement for surfaces generated by

hyperbolic curves. It was decided to test configurations with

the charge cross-sectional area increased by zero, 12.5 and 25.0
per cent in going from the liner base to liner internal apex.

The case where a zero per cent change occurs is the constant cross-

sectional area case and is approximated by the 10°9 ' conical charge

discussed above. The hyperbolic curves are illustrated in Fig.47a.

T2e hyperbolic liner chosen for these tests is designated

as the 40 °, .020-inch design. This means that the liner wall

thickness is .020-inch at the liner base (as measured in a plane

perpendicular to the liner axis). This design had produced a

segmented jet when tested with the 10°9 ' charge whereas the 40 °,

.030-inch hyperbolic liners had produced integral jets in the

same charge configuration. It was reasoned that if there were an

obvious best charge configuration, it would be recognized by ob-

serving an improvement in jet integrity of the more sensitive
liner design.

A typical charge assembly is shown in Fig. 45. All of the

charges were cast with octol. The C/M variations for the various
charge configurations are shown in Fig. 48.

The test data are summarized in Table XVII and radiographs

of the jets are shown in Fig. 49. It is seen that none of the

hyperbolic charge configurations produced an integral jet, while

two of the conical charge configurations did.

It is interesting to compare the velocity gradient in the

jet by taking the difference in jet segment velocities for each
round. These values are listed in Table XVII. There is no signi-

ficant trend seen within either the conical group or the hyper-

bolic group; however, it is seen that the hyperbolic charges as a

group display a greater velocity gradient than the conical
charges as a group. It appears that the conical charge configur-

ation is more prone to form a cohesive jet than the hyperbolic

configuration.
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Another interesting observation is the existence of a bulbous
section i a the jets. This was most pronounced for the case,
equals lO°9 ' , which had produced integral jets from 40°, .030-inch
hyperbolic liners. There was no bulbous section observed for the
jets from the latter liner design. This shows the effect of liner
wall thickness on the jet formation process, since in both cases, the
liner wall cross-section area was constant.

It is seen in Fig. 48 that the C/M curves for the two cases_

equals 12 ° and _ equals 13 ° (which had produced integral jets)

decrease significantly in going from liner apex to liner base. For
the case of the 10°9 ' conical charge which did not produce an

integral jet from 40°_ .O20-inch hyperbolic liners but which had

produced integral jets from 40 ° , .O30-i.nch hyperbolic liners, the
C/M ratio is seen to increase then decrease rather uniformly along

the liner axis. This shows that more than one C/M variation can

produce an integral jet and that the success of the given variation

is related to the hyperbolic liner wall thickness. It appears that

there may be one C/M variation which may successfully form integral

jets for a range of wall thicknesses; however, it is not believed

that there is a single_ theoretically optimum C/M variation which
can work for all liner wall thicknesses. The latter opinion is

based on the assumption that there are too many variables involved

for this to be possible.

The charge design, _ equals 12 °, was used in the materials

study phase of the project to produce an integral iron jet.

Initially, iron liners (40 °, .O30-inch hyperbolic type) were
tested in the 10°9 ' conical charge configuration. The jets pro-

duced were found to be segmenting due to a velocity gradient.

However, when tested in the 12 ° conical charge configuration, the

Jet was integral for one of the irons tested.

This result emphasizes the effect of charge geometry as well as

material properties on the ability to produce an integral jet.

Conclusions. - It was concluded that the development of an

integral jet could be accomplished by employing hyperbolic type

liners i.n the bi-explosive charge. However, it wGuld be necessary

to do the development work in the bi-explosive charge itself

because of the sensitivity of the jet formation process to charge

configuration and liner design.

CONCLUSIONS

The ultimate goal of the project, an integral 2 gram jet

pellet with a velocity in excess of 12 km/sec, was not achieved;

however, all of the key developments leading to the final design
were successful_ and in one test an integral nickel jet with a
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velocity of 11.25 km/sec was produced. There is strong evidence

that a 60 ° liner angle and a further adjustment of the liner cross-

sectional area would yield an integral jet with a velocity of

12 km/sec.

During the course of the development the following results
were achieved:

1. A bi-explosive charge was developed which produced a

convergent conical detonation wave. This explosive
charge design produced jet velocities as high as 12.5

km/sec with liner cone angles in the range 50 ° to 70 °.

The high velocities obtained with this design apparent-

ly result from the high effective detonation rate and

the more efficient transfer of energy from explosive to
liner.

2. The concept of employing large angle liners to in-
crease the velocity level at which the shaped charge jet

becomes non-cohesive proved successful. Cohesive jet
material was observed at velocities as high as 12.5

km/sec whereas previously (Contract NAS1-5212) cohesive

jet material was not observed beyond iI km/sec.

3. The concept of controlling the jet velocity grad-

lent by controlling the shaped charge liner cross-

sectional area proved to be a good approach for the bi-

explosive charge. While the problem of forming an

integral jet at 12 km/sec was not completely solved,

substantial improvements were obtained by this method.

4. Studies with various types of pure iron showed that

both the material purity and grain size were important
in the formation of an integral jet. It had previously

been found that low carbon steels (including ingot iron)

were less prone to form a cohesive jet than nickel.

The results of this study indicate that a pure iron

(.01 per cent carbon) with a small grain size (ASTM6 -

ASTMB) can form a cohesive jet as readily as nickel.

r

RECOMMENDATIONS

The results of this project indicate that it is possible to

form an integral nickel or iron jet with a velocity of 12 km/sec.

It is recommended that in any further development to achieve the

stated goal the following approach be taken.



i. Continue the development using bi-explosive charges and
large angle liners. Specifically, it is believed that a 60 ° cone
angle liner can accomplish the goal.

2. Conduct tests where the shape of the C/M ratio curve
is varied. This variation should be effected by changing the
shape of the liner cross-section area variation curve.

3. Manufacture iron liners from a pure fine grained iron.
Iron with the purity and grain size of that shown as lot 64 in
Appendix C should be used.

4. Conduct further tests to develop aniahibiting technique
which will prevent non-steady state jet debris from following the
main jet. It is believed that modifying the base of the liner
will provide the inhibiting effect, but more study of the approach
is required.
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APPENDIX A

ANALYSIS OF SHAPED CHARGE JETTING PROCESS

USING THE STEADY-STATE THEORY

Results of tests conducted with various shaped charge designs

have indicated that for a given shaped charge liner cone angle and

liner material there is an upper limit to the jet velocity beyond

which the jet material becomes progressively less cohesive as the

jet velocity is increased (by using more energetic explosive,
thinning the liner wall, etc.). This phenomenon can be explained

by the existing steady-state shaped charge theory if it is accepted
that the sound velocity of the liner material is an important

limiting parameter.

Consider the steady-state shaped charge process as shown in

Fig. A-1. The figure, based on the shaped charge theory developed

by Birkhoff et. al.,(Ref. 6) shows the relationships between the

shaped charge variables from the point of view of a laboratory

coordinate system (Fig. A-la) and from the point of view of a

coordinate system moving with velocity V, (Fig. A-lb). The velo-

city of the liner wall V2 flowing into the stagnation point, rela-
tive to the moving coordlnate system, is the object of this analysis.

This velocity has been considered by shaped charge investigators

such as Eichelberger (Ref.7) and Walsh et.al., (Ref.8) to be criti-

cal in the sense that when it exceeds the sound velocity in the

liner material, shock waves appear in the region of the stagnation

point. Furthermore, if V2 is sufficiently high, the shock waves
occur right at the stagnation point and prevent a jet from being

formed.

In order to find how V 2 varies as a function of other shaped

charge parameters_ consider the following set of relationships

provided by the steady-state charge theory

Vj = V o
cos (=/2) (4)

sin

where

Vj =

V o =

CL =

=

Jet velocity

Collapse velocity of liner material

Half angle of conical liner

Collapse angle of liner material

(5)

4
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(5)
V o cos

= 2 sin -I +_

2 U d

where

U d = Detonation rate of explosive

V1 = V o

cos 1/2 C_-_)

sin

(6)

where

V 1 = Stagnation point velocity

V 2 = Vj - V 1

(7)

where

V 2 = Liner wall flow velocity relative to
moving coordinate system

It can be shown that the above equations can be solved

to give the following relationship

Vj

V 2 = __
2

i D

tan a/2

Vj
cot _/2 - __ cot a

U d

(8)

where Vp is the velocity under discussion and V_ u and U d are
the jet-veloclty_ cone half angle and explosive-detonatio_ rate_

respectively. It is seen that in this form the jet velocity is

treated as an independent variable. A plot of Vp as a function

of three parameters is shown in Fig. A-2. In studying this figure
it m1_h h: _ _n m_na h_=_ _nmA nf tb_ pn_nt_ nn h_e _,i_,_

shown may not be physically possible. All that is implied here

is tha5 if it is possible to obtain a given jet velocity (Vj)

with a given cone angle (2_) and a given detonation rate (Ud) _

then the indicated liner wall flow velocity (V 2) must have existed.
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The sound velocities for iron and nickel are shown as horizontal

lines in Fig. A-2. It is seen that the constant jet velocity

curves intersect the sound velocity lines. The important point to

be seen is that the coordinate points (V2_ 2_) on the constant jet

velocity curves_ which lie above the sound velocity line_ have a
V2 greater than the sound velocity in the given material and those

t_at lie below have a value of V 2 less than the sound velocity in

the material. Furthermore_ the value of V2 decreases as the cone
angle (2a) increases.

Thus_if it is assumed that jet instability is related to

the value of V2 and that it is desirable to keep the value of V2
less than the velocity of sound in the liner material_ then it is

expedient to form the jet with a liner that has as large a cone
angle as possible.
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4

LABORATORY COORDINATE SYSTEM

_._DETONAT ION FRONT

U d UNDISTURB_ LINER
WALL

COLLAPSING LINER WA

SLUG 8= 90 ° - ½(/_-_)

t V_ t Vj_'_- } CONE AXIS._r

V0 - COLLAPSE VELOCITY

V S - SLUG VELOCITY

Vj - JET VELOCITY

U d - EXPLOSIVE DETONATION RATE

El - CONE HALF ANGLE

t_ - COLLAPSE ANGLE

M0VING COORDINATE SYSTEM

(

DETONAT ION FRONT

-'Z -- V2 - - CONE AXIS

V 1 -, _lrlnP-!TV nr .IiikiP.TinM rl_" P,rtl I.AP.C;IN_ I IIMEII WAIL

V 2 - VELOCITY OF LINER WALL, JET AND SLUG RELATIVE TO

MOVING JUNCT I ON

Vj= Vl* V2 Vs= V1- V2
Fig. A-I.
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APPENDIX B

DEVELOPMENT OF DESIGN EQUATIONS FOR THE
BI-EXPLOSIVE CHARGE CONFIGURATION

P_(O

PI(O,O' P2(r,O)

._----P4(R,Y)

i
i
i

I

I
I
I
i

I

I

I

I

\
P3(R,O)

Detonation

Front

+X

Fig. B-1. Cartesian co-ordinate system

impressed on the bi-explosive

design.
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Fig. B-1 shows the lower portion of the bi-explosive
charge configuration. The points PI, P_, P_, and P_ are fixed
and P4 is the variable. The following _re _esignat_d as constants:
R, r, and a. Since Y and h are defined by the following equations,
Eqn. 9 and Eqn. i0, the only variable remaining is "Y".

Equation 9 relates the detonation rates to the angle Y.

cos )" = Ul/U2, where u] is the detonation
rate of-the inner explosive
and u2 is the detonation
rate 6f the outer explosive.

(9)

h = r cot _ (i0)

Representing the points PI, P2, P4, and P5 as vectors, then

Fig. B-2 corresponds to the associated portion of the charge con-

figuration in Fig. B-1.

+Y

where P-_l= (0,0)

P2 = (r,0)

_4 = (R,Y)

_5 = (O,h)

P
P7

P1
P2

+X

52

Fig. B-2. Vector system impressed on

bi-explosive design.



From Fig. B-2:

P6 = P5 - P4

= (0 - R, h - Y)

= (-R, h - Y)

= (r - R, 0 - Y)

= (r - R, - Y)

(ii)

(12)

Then the dot product (inner product) of P6 and P7 could be
written as:

IP61 " P7 = cos Z (13)

where Ip61 = (R 2 + (h- y)2)I/2 (14)

Substituting JP61 and
tively into Eqn. 13

-R(r - R) - Y(h - Y)

(R 2 + (h - Y)2)i/2((r - R) 2 + y2)i/2 cos ¥

((r - R) 2 + ¥2)1/2 (15)

IP71 from Eqn. 14 and Eqn. 15 respec-

(16)

or

-(R(r - R) + Y(h - Y)) =

(R 2 + (h - Y)2)i/2((r - R) 2 + y2)i/2 cos Y (17)

Squaring both sides of Eqn. 17:

(R(r - R) + Y(h - y))2 =

(R 2 + (h - Y)2)((r - R) 2 + y2) cos 2 y (18)

Expanding both sides of Eqn. 18:

R2(r - R) 2 + 2RY(r - R)(h - Y) + y2(h - y)2 =

(R2(r - R) 2 + R2y 2 + (r - R)2(h - y)2 + y2(h _ y)2)cos 2 Y

(19)
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Regrouping the quantities in Eqn. 19:

(R2(r _ R)2 + y2(h _ y)2) + (2RY(r - R)(h - Y)) = (20)

(R2(r - R) 2 + y2(h - Y)2)cos2Z+ (R2y 2 + (r - R)2(h - Y)2)cos2 7

Adding -(R2(r - R) 2 + y2(h - Y)2)cos 27to both sides of

Eqn. 20 and adding -(cos2Z)(2RY(r - R)(h - Y)) to both sides to

complete the square:

(I - cos 2_(R2(r - R) 2 + 2RY(r - R)(h - Y) + y2(h - y)2) =

(cos 2_(R2Y 2 - 2RY(r - R)(h - Y) + (r - R)2(h - y)2) (21)

Dividing both sides of Eqn. 21 by (i - cos27):

R2(r - R) 2 + 2RY(r - R)(h - Y) + y2(h - y)2 = (22)

((cos27)/(i - cos27))(R2y 2 - 2RY(r - R)(h - Y) + (r - R)2(h - y)2)

Taking the square root of both sides of Eqn. 22 and setting

((cos27)/(i - cos2Z)) I/2 = S:

R(r - R) + Y(h - Y) = S(RY - (r - R)(h - Y)) (23)

or considering the other sign possibility:

R(r - R) + Y(h - Y) = -S(RY - (r - R)(h - Y) (2b, - )

Expanding both sides of Eqn. 23:

R(r - R) + Yh - y2 = SRY - Sh(r - R) + SY(r - R) (25)

Shifting all of the quantities in Eqn. 25 to the left side

of the equality sign and regrouping the quantities:

_y2 + Y(h - SR - S(r - R)) + (R(r - R) + Sh(r - R)) = 0

(26)

or .y2 + Y(h - Sr) + (R + Sh)(r - R) = 0 (27)
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Similarly Eqn. 24 can be written as:

_y2 + Y(h + Sr) + (R - Sh)(r - R) = 0

Both Eqn. 27 and Eqn. 28 are in the quadratic form:

AX 2 + BX + C = 0

which has solutions_

X _.

-B ± (B2 - 4AC)1/2

2A

(28)

(29)

(3o)

where in Eqn. 27,

A = -i (_I)

B = h- Sr (32)

C = (R + Sh)(r - R) (33)

and in Eqn. 28,

A = -i (34)

B = h + Sr (35)

C = (R - Sh)(r - R) (36)

and in both Eqn. 27 and Eqn. 28_

S = ((cos2y)/( 1 - c°s2y))i/2 (3'7)

Therefore_ there are four solutions for "Y". Two solutions
are found from Eqn. 27 and two solutions from Eqn. 28. But, the

solutions for "Y" obtained from Eqn. 27 yield imaginary values of

"Y". Then the desired positive real value for "Y" must be found

by one of the two solutions for "Y" obtained from Eqn. 28. The
desired solution for "Y" is shown below_ Eqn. 38. Equation 38 was
_4..^_ _......_-_'_'_-_ Eqn. _ _- 35 _ _" 36 _^ Eqn._

and using the negative (-) sign before the square root in the

Eumerator.

Y = (-h -Sr -((h + St) 2 + 4(R - Sh)(r - R)) I/2) / -2



Having solved for "Y", it would be of interest to find the

angle between the detonation wave and the liner surface. Since

the explosives used to form the bi-explosive charge could be

varied for a given loading fixture with fixed "Y"_ the following

development is based on a general detonation rate ratio and a
fixed "Y".

Ps(O,h)

PI(O,O)

+Y

a

-Pb(R,Y)

_where the

angle k need
not be 90 °

._____Detonation
Front

+X
r

P2(r,O) P3(R, o)

Fig. B-3. Cartesian co-ordinate system impressed on

bi-explosive design which allows for

changes in the explosives.

In Fig. B-3, the line between P4 and P5 is taken to be

the line "a"_ the line between P2 and P5 is taken to be the
line "b"_ and the line between P2 and P4-is taken to be line "c".

q
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a

Equation 39 relates the detonation rates to the angle
instead of the angle Yas in Eqn. 9.

! ! !

sin _ = Ul/U 2 , where u I is the
detonatia_ rate of

the new inner ex-
!

plosive and u_ is
the detonatio_ rate

of the new outer

explosive.

(39)

Using the length formula for lengths of line segments:

a2 = R2 + (y - h)2

b 2 = r2 + h 2

c2 = (R - r) 2 + y2

(41)

(42)

Applying the "Law of Cosines" to Fig. B-3:

cos A = (b 2 + c2 - a2)/(2bc) (43)

but, _ = 180 o - ¢ (44)

and, 8 + _ + A = 180 ° (45)

Substituting A and W from Eqn. 43 and Eqn. 44 respectively
into Eqn. 45:

! !

e + 180 ° - arc sin(ul/u2)+ arc cos((b 2 + c2 - a2)/(2bc)) = 180 °
(46)

therefore,

! !e = arc sin(ul/u2)- arc cos ((b 2 + c2 a2)/(2bc)) (47)

Having solved for "0" in terms of a fixed value of "Y" and

designated detonation rates of the inner and outer explosives, it

would be of interest to develop an effective detonation rate for

the bi-explosive system. Conventional shaped charge designs assume
the detonation front travels as a plane wave, which is normal to

the liner central axis, moving down the liner central axis. There-

fore, if the conic detonation front of the bi-explosive design
sweeps the liner surface in a time interval At, the effective

detonation rate could be defined as the rate at which a conven-

tional plane detonation front would sweep the liner surface in the

57



same time interval _t. The following development arrives at an

equation for the effective detonation rate (UE).

!

where u I is the deto-
nation rate of the inner

explosive_ u_ is the rate
at which the conic deto-

nation front sweeps the

liner surface_ uE is the
effective detonation rate.

u_

Conic Detonation

/ Front in Inner

e/_ / Explosive

",, u. oo
",-----Central Axis of Liner

Fig. B-4. Sketch for bi-explosive charge configuration

effective detonation rate development.

or_

and

or_

In Fig. B-4:

! !

sin @ = Ul/U _

!

ua = Ul/sin 8

cos _ = UE/U _

U E = _G COS

(48)

(49)

(5O)

(51)

Substituting u s from Eqn. 49 into Eqn. 51:

u E = (U_ COS a)/sin 8 (52)
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APPENDIX C

SUMMARY OF METALLURGICAL DATA FOR

VARIOUS NICKEL AND IRON MATERIALS USED

IN SHAPED CHARGE LINER TESTS

Material Record

Type Material: Type 200 Nickel, cold drawn, 3-inch diameter bars.

Firestone Lot No.: 50

Heat Treatment: None

Mechanical Properties:

Yield Strength

Tensile Strength

Elongation in 2-inches
Reduction in Area

Rockwell Hardness

72,500 psi

77,000 psi
3o%
72%
B86

data obtained from material certifications.

Chemical Analysis:

Nickel 99 53%

Carbon iO47_
Manganes e
Iron .06%

Sulfur 005%

Silicon i06%
Copper O1%

data obtained from material certifications.

(nickel includes small amount of cobalt)
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Material Record

Tvoe Material: C-1020 Steel, hot rolled special bar quality,
2-inch diameter bars.

Firestone Lot No.: 51

Heat Treatment: Rough machined pieces heated to 1300oF for

30 minutes and air cooled.

Mechanical Properties:

Rockwell Hardness

Grain Size
B6_-67

ASTM7

Chemical Analysis :

Carbon 18%

Manganese !38%Sulfur 0344
Phosphorous 009_

data obtained from material certifications
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Material Record

Type Material: Type 200 Nickel, cold drawn, 2-1/8-inch
diameter bars.

Firestone Lot No.: 57, 57A

Heat Treatment: Lot 57; rough machined pieces were heated to
1500°F for 30 minutes and air cooled.

Lot 57A; None

Mechanical Properties: Lot 57 Lot 57A*

Yield Strength

Tensile Strength

Elongation in 2-inches
Reduction in Area

Rockwell Hardness

Grain Size

26,500 psi 91,000 psi

0OO psi 95,1_ psi

B51 B96
ASTM6

*data obtained from material certifications.

Chemical Analysis :

Nickel

Carbon

Manganese
Iron

Sulfur

Silicon

Copper

52%o8%
28%

o1%

data obtained from material certifications.

(nickel includes small amount of cobalt)

Spectrographic Analysis:

Nickel Major

Carbon .080%

Manganese 1045%"
Iron : _
Sulfur .O0 %

Silicon .025% _
Phosphorous : 002 5%

Spectrographic Analysis showed no other trace metals
greater than 0.01%.
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M a t e r i a l  Record 

Type Mate r i a l :  Armco magnet ic  i n g o t  i r o n ,  co ld  drawn, 2-1/4 i n c h  
diameter bars .  

F i r e s t o n e  Lot No.: 59A ( c e r t i f i e d  t o  be of the same h e a t  number 
and composi t ion as Lot  59) 

Heat Treatment: Rough machine p i e c e s  heated t o  1300°F f o r  1 hr .  
and s low cooled.  This was l a t e r  found t o  g i v e  a n  
incomple te  annea l ,  reducing  the ha rdness  t o  abou t  
Rockwell B58 w i t h  on ly  p a r t i a l  r e c r y s t a l l i z a t i o n .  

Microphotograph* : 

Longit .udina1 V i e w  
Magnif icat i0 .n  X 5 0  

62 

* Microphotograph t a k e n  from s e c t i o n e d  l i n e r  near  the  apex. 



Material Record 

T m e  Material: Armco Magnetic Ingot Iron, cold drawn, 
3-1/2-inch diameter bars. 

Firestone Lot  No.: 60, also representative for Lot 59. 
Heat Treatment: None 

Mechanical ProDertj es: 

Yield Strength 
Tensile Strength 
Elongation in 2-inches 
Reduction in Area 
Rockwell Hardness 
Grain Size 

Chemical Analvsis: 

Carbon 03% 

Nickel 0 02% 
c oppe r 0 10% 

Chromium . O l P  

Manganese -04% 
Sulfur 023% 
Silicon 003% 

Phosphorous .012% 
Molybdenum .02% 

SDectroPraDhic Analvsis: 

Iron Major 
Carbon 0038% 
Manganese -021% 
Sulfur . 014% 
Phosphorous .006$ 
Chromium 02 5% 

Spectrographic Analysis 
than O.Ol$. 

48,600 psi 
52,500 psi 

2 5% 
6 5% 
B69 
Mixed 

Photomic ro maDh : 

sho 

Transverse View 
Magnification x5O 

red no other trace metals greater 
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M a t e r i a l  Record 

T v P e  Mate r i a l :  Type 270 Nicke l ,  h o t  f i n i s h e d ,  2-1/4-inch 
d iameter  b a r s .  

F i r e s t o n e  Lot No.: 62,  62B 

Heat Treatment: L o t  62; None 
L o t  62B; rough machined p i e c e s  were hea ted  t o  
1500°F f o r  30 minutes and water  quenched. 

Mechanical P roDer t i e s :  

Yield S t r e n g t h  
T e n s i l e  S t r e n g t h  
Elongat ion  i n  2-inches 
Reduction i n  Area 
Rockwell Hardness 
Grain S ize  

Chemic a1 Ana l v s i  s : 

Carbon 
Manganese 
I r o n  
S u l f u r  
Copper 
Chromium 
Cobal t  
Selenium 

-01% 
.OOl% 
.OOl% 
.OOl$ 
0 001% 
0003% 

.OOOl% 
0004% 

Lot 62 

37,200 P s i  
46,500 p s i  

56% 
8 1% 
B P  

ASTMl 

PhotomicronaDh: 

Lot 62B 

10,600 p s i  
46,900 p s i  

B23 
ASTMl 

% 
I 

Lot 62 Lot 62B 
Transve r se  View 

Magn i f i ca t ion  x50 

Lots 62 and 62B d i f f e r  o n l y  by t h e  s t a t e d  d i f f e r e n c e  i n  h e a t  
t r ea tmen t .  



M a t e r i a l  Record 

. 

I 

I 

Type Material: E l e c t r o n  beam melted, f o r g e d ,  annea led ,  machined 
and ex t ruded  1010 s t e e l ,  2.45-inches diameter ba r  
!?-inches long.  

F i r e s t o n e  Lot  No.: 64 

Heat Treatment:  

M a t e r i a l  Process ing:  

Mechanical P r o p e r t i e s *  : 

M a t e r i a l  heated dur ing  d e c a r b u r i z a t i o n  process .  

Decarburized a f t e r  rough machining. 

Rockwell Hardness H84 
Gra in  S i z e  ASTM6 t o  8 

Chemical Analysis*: 

Carbon .OO?% 
Manganese 
S u l f u r  
S i l i c o n  
Copper 
Phosphorous 

Microphotograph* : 

Transverse V i e w  
Magni f ica t ion  X 5 0  

* da ta  t a k e n  a f t e r  deca rbur i za t ion .  



M a t e r i a l  Record 

Type Mate r i a l :  Forma I r o n ,  h o t  r o l l e d ,  2-3/4-inch d iameter  b a r s .  

F i r e s t o n e  Lot No.: 66 

Heat Treatment: None 

Mechanical P r o p e r t i e s :  

Yield S t r eng th  
Ul t imate  S t r e n g t h  
Elongat ion  i n  2-inches 
Reduction i n  Area 
Roc kwe 11 Hardness 
Grain Size 

Chemical Analysis : 

Carbon 
Manganese 
Sul fur  
S i l i c o n  
Nicke l  
Copper 
Phosphorous 
Molybdenum 
Chromium 

.04% 

.21% 

.020% 
003% 
-05% 
05% 

.012$ 

.Ol% 

.06$ 

24,750 p s i  
42,200 p s i  

55% 
80.5% 
B35  

ASTM6 

Photomicrograph: I 

I 

Transve r se  View 
Magn i f i ca t ion  x50 
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Material Record 

Tme Material: 

Firestone Lot No.: 73, 73B 

Heat Treatment : Lot 73; None 

Forma Iron, hot ro l led ,  4-inch diameter bars. 

Lot  73B; the rough machined pieces were heated 
t o  1710°F fo r  15 minutes and a i r  cooled. 

Mechanical ProDerties: Lot 73 Lot 73B 

Yield Strength 28,500 p s i  24,000 p s i  
Tensile Strength 43,800 ps i  40,300 p s i  
Elongation i n  2-inches 41% 50% 
Reduction i n  Area 79% 80% 
Rockwe11 Hardness F81 F73 
Grain Size Mixed ASTM5 

(ASTM4 t o  >1> 

Chemical Analysis: Photomic ronraph: 

Carbon 03% 
Manganese . 24% 
Sulfur 017% 
Si l i con  .Ol% 
Phosphorous .OOl% 

Lot  73 Lo t  73B 
Transverse View 

Magnification x50 

Lots  73 and 73B d i f f e r  only by the s ta ted  difference i n  heat 
treatment,. 



M a t e r i a l  Record 

Type Mate r i a l :  E l e c t r o n  beam melted i r o n ,  5- inches diameter  b a r s .  

F i r e s t o n e  Lot No.: 74A, 74B 

Heat Treatment: Lot  74A; none 
Lot 74B; the m a t e r i a l  was hea ted  t o  1600OF and 
forged  t o  2-1/2 inches  diameter  ( f i n i s h  temp. 
1200OF) t h e n  hea ted  t o  1710°F f o r  1 h r .  and a i r  
cooled, twice.  

Mechanical P r o p e r t i e s :  Lot 74A Lot 74B 
1s t  Anneal 2nd Anneal 

Yield S t r e n g t h  -- 18,000 p s i  17,000 p s i  
T e n s i l e  S t r e n g t h  -- 36,900 p s i  38,000 p s i  
E longat ion  i n  2- inches  -- 46% 53% 
Reduction i n  a r e a  -- 57% 85% 

F63-67 Rockwell Hardness B21 F63-67 
Grain S i z e  Mixed-too l a r g e  ASTMl ASTMl 

t o  c l a s s i f y  
- Chemical Analysis :  

Carbon 
Manganese 
S u l f u r  
Phosphorous 

Full S i z e  Photograph: 

74A 
Transverse View 

Magni f ica t ion  Full S i z e  

.0015% 

.008% 

.006% 

Photomicrograph: 

.0020% 

74B 
Transve r se  V i e w  

Magn i f i ca t ion  X50 

Lots  74A and 74B d i f f e r  on ly  by t he  s t a t e d  d i f f e r e n c e s  i n  h e a t  
t rea tment .  
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Material Record 

Type Material: Ferrovac E CG Nat, vacuum purif ied e l ec t ro ly t i c  
i r o n  annealed by Wgr.,2-1/2-inch diameter bars. 

F i r e s t  o n~ e Lot No.: 79, 79B 

Heat Treatment: Lot 79; None 
Lot 79B: one bar was heated t o  130O0F f o r  4 - -  , 
hours and furnace cooled overnight. 

Mecha n i c a l  ProDerties: 

Yield Strength 
Tensile Strength 
Elongation i n  2-inches 
Reduction i n  Area 
Rockwe 11 Hardness 
Grain Size 

Chemical Analysis: 

Carbon .OlO% 
Manganese . 001% 
Sulfur  -005% 
S i l i con  003% 
Nickel . 02% 
Ccpper . 001% 

Molybdenum .OOl% 
Chromium . 001% 

Tungsten .Ol$ 

Phosphorous 003% 

Vanadium . 004% 

Cobalt .007% 
Nitrogen 
Oxygen 
Hydrogen 

. 0002% . 00046% . 000016$ 

79 7 9B 

21,600 p s i  
39,000 p s i  

51% 

31,100 p s i  

40% 
70% 
F85 

44,100 p s i  

86% 
F72 

Mixed ASTM3-5 Mixed ASTM3-6 

Lot  79 Lot 79B 
Transverse View 

Magnification x5O 

The Chemical Analysis was obtained from mater ia l  c e r t i f i c a t i o n s  . 
Lots 79 and 79B d i f f e r  only by the s ta ted  difference i n  heat  
treatment. 
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M a t e r i a l  Record 

Type Mate r i a l :  B a t t e l l e  pure ( e l e c t r o l y t i c )  i r o n ,  e l t z t r o n  beam 
melted and f l o a t i n g - z o n e  r e f i n e d ,  1-3/4-inch 
diameter bar .  

F i r e s t o n e  Lot No.: 81 

Heat Treatment: None 

Mechanical P r o p e r t i e s :  

Grain S ize  
Rockwell Hardness F 40-50 (H84) 

t o o  l a r g e  t o  c l a s s i f y  

Chemical A n a u s l s .  * .  

See next  page f o r  B a t t e l l e  a n a l y s i s  of i m p u r i t i e s  

- Photograph ( F u l l  S i ze ) :  

I 

I 

Transverse View 



ANALYSIS OF BAR 102

All Analyses are ppm by Weight (1 ppm = 0.0001_)

Resistivity Ratln Without a Maonetic Field Maximum Ratio Wlth a Magnetic Field

_297ii.5//°4.2 K 180 540

Nnnmetalllc Tmptlr_tie_

Oxygen 1.2

Nitrogen

Vacuum Fusion N<O.I

Internal Friction N<0.2

Hydrogen 0.2

Carbon

Combustion-Conductometric 6

Internal Friction _4.7

Sulfur

Mass Spectrometer 1.2

Total nonmetallic impurities 7 •

(Includes internal friction values for

nitrogen and carbon and mass spectrometer

or colorometric values for sulfur.)

Metallle Tmnurltles _ft_n _ot_ct_d

With the Mass _p_ctrnmeter

(Impurities not detected are denoted

N together with the estimated

detectlnn limits)

Aluminum -- Nickel 2.

Arsenic 0.5 Phosphorus 0.8
Boron 0.i potassium 0.3

Calcium 0.4 Silicon _5.

Chromium I0. Sodium 0.4

Cobalt i0. Tantalum 4.

Columbium 0.06 Tin N<O.12

Copper 1.2 Titanium 0.3

Germanium _0.9 Tungsten 0.07

Magnesium 0.4 Vanadium N<O.03

Manganese 2. Zinc N<0.4

Molybdenum 0.8 Zirconium N<O.07

Total detected metallic impurities 4Q

(Includes values marked _ except germanium,

and values underlined below plus an arbi-

trary 2 ppm aluminum.)

Metallic Impurities not Usually Detected Wit= the Mass Spectrometer

(Tmnurit_es detected 4n this bar ar_ underlined )

Antimony N<O. 012 Holmium N<O. Ol Rubidium

Barium N<O.OI Indium N<O. 04 Ruthenium

Beryllium Iodine N<0.025 Samarium
Bismuth _2 Iridium N<O.02 Scandium

Bromine N<O.OI Lanthanum N<O.o08 Selenium

Cadmium N<0.25 Lead 0.07 Silver
Cerium N<O.OO8 Lithium N<O.O01 Strontium

Cesium N<O.O08 Lutetium N<O.OI Tellurium

Dysprosium N<O.04 Mercury N<O.04 Terbium

Erbium N<O.15 Neodymium N<O.OI5 Thallium

Europium N<O.02 Osmium N<O.03 Thorium

Gadolinium N<O.04 Palladium N<O.04 Thulium

Gallium N<0.2 Platinum N<O.04 Uranium

Gold N<O.OI2 Praseodymium N<O.O08 ytterbium
Hafnium N<O.04 Rhenium N<O.02 yttrium

Rhodium N<O.I

N<O. 05

N<O. 06

N<O. 04

_0.08

N<O. I

_o._2
N<O.05

N<0.25

N<O.OI

N<O.OI5

N<0.012

N<O.I

_'.0.012

k_O.03

N<O.04
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APPENDIX D

DEVELOPMENT OF DESIGN CRITERION FOR

CONSTANT CROSS-SECTIONAL AREA LINER AND

CONSTANT CROSS-SECTIONAL AREA EXPLOSIVE CHARGE

Determination of the curve which will =_z_rat_ R surface

inside a conical liner such that the cross-sectional area will

remain constant along the liner axis:

The lines which will generate the conical surface and the

interior surface in the x_ y plane can be shown as:

¥

( X,YL)_

.
(a,o) (h,o)

X

let it be required that the cross-sectional area between the

surfaces be a consta.nt_ AL_ from x = a to x = h

(yL 2 _ y2) = AL

but YL = mx where m = tan

thus _(mx)2 - y 2] = AL

x 2 y2
-- _ __ = 1

_. AL/_ m 2 AL/Tr

or
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since m is a constant and we require that AL be a constant we canlet

a2= AL/_m2

b2 =
AL/

x2 y2

thus a2 b2 = 1 (54)

which is a hyperbola symmetric about the x axis and open in the
positive x direction.
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Determination of the curve which will generate a surface
outside a conical liner such that the cross-sectional area will

remain constant along the liner axis:

The lines which will generate the conical surface and the

exterior surface in the x, y plane can be shown as:

Y (x,y)- /

I

(h,o)

=_---Chorge Surfoce

X

let it be required that the cross-sectional area between the two

surfaces be a constant, Ac, from x = o to x = h

T(y 2 _ yL 2) = A c (55)

but YL = mx

thus T ly2- (mx)2] = A c

or
y2 x2

Ac/_ Ac/_m2

= 1

where m = tan
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since m is constant and we require that A c be a constant we can
let

a2 = Ac/_m 2

b2 = Ac/_

y2 x2

thus b2 a2 = i
(56)

which is a hyperbola symmetric about the y axis and open in the

positive y direction.
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APPENDIX E

DEVELOPMENT OF DESIGN CRITERION FOR

AN EXPLOSIVE CHARGE WHOSE CROSS-SECTIONAL

AREA VARIES LINEARLY

Determination of the curve which will generate a surface

outside a conical surface such that the cross-sectional area will

vary linearly along the conical axis:

The lines which will generate the conical surface and the

exterior surface in the X_ Y plane can be shown as:

Y

l

I

(xa,o) (Xh,o 

--_Exp/osive Chorge

.._--Liner

X

let the area between the exterior surface and conical surface

be given by:

T(Yc2 - YL 2) = A(X) (57)

let A(X) = MX+b (58)
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applying the following conditions to equation 58

when X = X a _ A(X) = K A o K>I

when X = Xh , A(X) = A o

K A o = M X a + b (59)

A o = MXh+b
(60)

Solving equations 59 and 60 for M and b gives

(i - K)A o
M =

Xh - X a

I(I - K)Aq]b = A o - Xh_ xTjXh

(61)

(62)

Substitute equations 61 and 62 into equation 58

A(X) :

(1 - K)A o

Xh - X a

(i - K)Ao]

X + Ao - (Xd "_a j Xh
(63)

Substitute equation 63 into eqiuation 57

T(Yc2 - yL 2) =

(i - K)A o

Xh - X a
.(I - K)Ao]

X+ Ao ..... Xh

Xh-Xa]
(64)

It can be seen from the figure that

YL = mX
where m = tan (65)
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Substitute equation 65 into equation 64 and solve for the radius

of the exterior surface_ Yc

I (_h- K ) A° AO I IX_ - K ) Xhll 1/2

X + m 1 - (66)
Yc = m2X2 + -_Xa _ _ Xa

When K = l_ equation 66 reduces to the case of constant cross-

sectional area along the liner axis. When K>l_ the cross-section-

al area of the charge will increase linearly from the liner base
to liner apex.

Equation 66 is a hyperbola symmetric about the Y-axis_ when K = 1
and symmetric about an axis parallel to and translated to the
right of the Y-axis for K _l.
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Table I

NUMERICAL VALUES FOR BI-EXPLOSIVE CHARGE DESIGN PARAMETERS

FOR VARIOUS EXPLOSIVE COMBINATIONS

Liner

Cone

Angle

(deg.)

5O

70

"Y" Location

of P4

(in.)
4.89
3.80

3.27

2.36
4.64
3.87

3.40
3.05

2.31
4.17

3.10

2.57

1.66
I

3.92

3.17

2.70

2.36
1.61

EXPLOSIVE (i)

Inner

60/40 comb. B

50/50 pentolite
TNT

76/24 b_ratol

75/25 octol

60/40 comp. B

50/50 pentolite
TNT

76/24 baratol

60/40 comp. B

50/50 pentolite
TNT

76/24 baratol

75/25 octol

60/40 comp. B

50/50 pentolite
TNT

76/24 baratol

Outer

75/25 oCtol
75/25 octol

75/25 octol

75/25 ogtol

pressed HMX

pressed HMX

pressed HMX

pressed H_O(

pressed HM_

75/25 octol

Angle 0
(deg.)

(2)

75/25 octol

75/25 octol

75/25 octol

pressed HMX

pressed HNLX
pressed HI_
pressed HNLX
pressed HNtX

Effective

Detonation

Rate (_E)
(km/secJ(2)

43.5 10.4
33.4 12.2
24.6 14.8
-3,0 -72,2
41.7 11,3
34.2 12.7
27.0 14.8
19.8 18.2
-4.9 -43.2
32.8 11.9

16.0
24.6

-12.1
13.2
16.4
22.5
39.8
-i0.7

22.3
13.1

-16.1

31.0

23.2

15.6

8.1

-18.2

(i) The following detonation rates were used for the above computed results:

Pressed HMX, 8.8 km/sec; octol, 8.3 km/sec; comp. B, 7.9 km/sec! pento-

lite, 7.4 km/_ec_ TNT, 6.8 km/sec; baratol, 4.1 km/sec.
(2) When the angle @ and the effective detonation rates are negative, the

conical detonation wave will hit the bottom of the liner first and the

detonation wave will sweep up toward the liner apex.
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Table IV

COMPARISON OF THE PREDICTED AND MEASURED VALUES

FOR THE ANGLE IN THE BI-EXPLOSIVE SYSTEM

40 ° Liner Cavity

50 ° Bi-Explosive Loading Fixture

EXPLOSI VH

Inner

60/40

comp. B

5o/5o
Pentolite

Outer
Wave Shaper

Type

Predicted

Angle 0

(de_.)
47.775/25 90° Lucite

octol 80° lead 47.7 50

75/25
octol 90° Lucite 38.6 47

Average
Measured

Anqle @ (de q.)
54

(i) @ is the angle between the conical wave front and the

conical cavity wall. For cases where there was no true

conical wave front, a straight line was fit to the straight-

est portion of the wave.
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EXPLOSIVE 1

EXPLOSIVE 2

F

u I < u 2

where A : Initiahon Point of Detonation Wave

u I= Detonation Rate of Explosive 1

u2= Detonation Rate of Explosive 2

E
A

Fig. 3. Schematic of linear wave front development

in a bi-explosive charge.
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M36A1 
Detonator 

\=~ 430 Polyurethane 
Wave Shaper 

A lumi num 

Body Liner  \; 

.205-in. Long 
RDX Load 

1- in .  T e t r y l  
Booster  

to Twisted 
P a i r  

-~ 
Upper Explos ive  

Inner  Exp 1 os  i ve 

/- r o u t e r  Explos ive  

4 :./ 

S c a l e  i n  Inches  
0 1 2 3 4 5  
2 

Fig. 12. Photograph of s e c t i o n e d  model of 
f i n a l  t i - e x p l o s i v e  t e s t  assembly. 



® +=
;., o..I"

_ oN .,-t e

OON

n
M

m

J

-,--I

_, oo

m o_

,% ,.,-i e

,,-i o m e ®

-g

°,--I

o_

i ,/

OON

• °

,-I ,--t

Iii



IX

Ii:l

E

ed
0
q
+)

,d

_d

1

: o
I,- r'-

--i _i --
+I

o_ o,, ,_ e,)

>-o_
-pI

" +" " i

B_C]3 d_'_BS 01

°o

8
7

I I

t_

o

,-I

o

('!.
0
o

0

0

,-t

d_
.Pt

112



i 

I4 
0 
El u 
0 

n 

I I 
I 
L-' i -  

I 

h ' -  

. # *  e 
.*s 

m.. 
* f  

. *  
1' 

a 

g . 



114

h

<__

_cO0 !

!i_8 "VIQ 000"?,

I_'_o'l_l_l®l
"VIC] "0_1 _00"- 086"I

I

Ii
Ii

II
ii
I I

hO

.H

_0

.H

0

0
0

0

0

d
r-_

.M



Q

m

o

_-y//,I/

0

_r.4

N_

_0

m_
0

r--l_
0

_,_I
(DO

ii_



®

O

!

O
o

WAVE SHAPER

)

70 ° Liner

Cavity

MINUM -^_ -7

OCTOL

_. B

PBX 9404

•lOS-in. AIR GAP

Fig. 18. Sketch of bi-explosive test assembly showing

.lOS-inch air gap at base of pressed PBX9404.
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700,  . 030- INCH WALL C O N I C A L  FORMA IRON LINER DWG. DRB-23-2429B It.1 
500 BI-EXPLOSIVE LOADING FIXTURE 

_I 800 LEAD WAVE SHAPER - " _ _ ~  

ALUMINUM ADAPTOR PLATE 

Exp l  os i v e : 
I n n e r :  60/40 Comp. B 
Outer: PBX 9404 

939-1 
T r a v e l :  2 ,  2 8 - i n .  ( A i r )  
V e l o c i t y :  12 .2  km/sec 

I i 

S c a l e  i n  i n c h e s  
0 1 2 

I I 1 

F i g .  20. J e t  p roduced  by 700, .030-inch w a l l  c o n i c a l  l i n e r  
u s i n g  comp.B/PBX9404 b i - e x p l o s i v e  c h a r g e .  
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o.) Non-lineor (lopered) Mod/fi¢otion / _ I _'__I L _

g
k

lg

tl

t/------ the woll thickness (of bose) for o consfont cross-
sectionol oreo liner

ft _ fhe wo# thickness (of bose) for o modified liner

Fig. 21. Sketches of the two types of modifications made

the constant cross-sectional area liner design.
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120

position of liner poBifion of

_ interg¢l apex _liner hone

[_ j-.030 In. wQII

iiiiiii
C .20 .40 .•0 ,•0 1.00 I.|O 1.40 1.60 I.•0

DISPLACEMENT ALONG LINER AXIS (inches)

Fig. 22. Variation in cross-sectional area for the

linear and non-linear liner modifications

versus displacement along liner axis.
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0.0

8.0

:5.0

0..

position of liner pomitiOn of

_._ __lntsrnotap., _ liner be..

- .OIS In. i_ll

-'--_- .Olll In.m_ll

I I I I
o .co .,so .so .so Loo Leo t.4o Leo _.lo

DI._PLACEMENT JJ.ONG LINER AXIS (Inches/

ILO

',,.,I

8.0

4.0

b.

122

poBition Of linmr po#i?io_ ot

.o,.,o..,,

_" -.018 il wOII

-,OSO i_ wOII

o .:o ._o ._o ._o ,o*o ,.:o ,._o ,.,o ,._o
OISPLACEMENT ALONG LINER AXIS (Inclne#)

Fig. 24. Variation in C/M for bi-explosive systems

using linear and non-linear designs versus

displacement along liner axis.
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70°, .020-INCH WALL FORMA I R O N  HYPERBOLIC LINER 
EXPLOSIVE: INNER, 60/40 COMP. B; OUTER, 75/25 OCTOL 

ALUMINUM ADAPTER PLATE 

500 BI-EXPLOSIVE LOADING FIXTURE 
800 LEAD WAVE SHAPER 

Non-Linear L ine r  (DRB-23-2524) Linear  Liner  (DRB-23-2520A) 

Trave l s :  2 ,  10- inches  ( a i r )  T rave l s :  1, 8- inches  ( a i r )  
Ve loc i ty :  10.47 km/sec Ve loc i ty :  10 .65  km/sec 

945-1 945-3 

~ ~ ~~ 

a 
i 

i 

S c a l e  i n  Inches 
0 I 2 

I I I 

F i g .  29 .  Comparison o f  j e t s  p roduced  by l i n e a r  and  non- 
l i n e a r  l i n e r  d e s i g n s  i n  b i - e x p l o s i v e  systems. 
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70°.,020-INCH WALL HYPERBOLIC FERROVAC I R O N  LINER DRB-23-2537A 
500 BI-EXPLOSIVE LOADING FIXTURE 

430 R I G I D  POLYURETHANE FOAM WAVE SHAPER 
ALUMINUM ADAPTOR PLATE 

Explosive:  
Inner:  60/40 Comp. B 
Outer:  75/25 Octo1 

Travel :  2, lO-in.  ( A i r )  
Veloci ty:  10.26 km/sec 

974-1 

Sca le  i n  inches 
0 I 2 
I I I 1 I 

F ig .  31. J e t  produced by 70°, .020-inch l i n e a r  
l i n e r  design ( r a t i o :  1 .75: l ) .  
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HYPERBOLIC EXPLOSIVE V A R I A T I O N  TESTS 
60°, .020-inch WALL EBM I R O N  LINER DWG. DRB-23-2543 

800 LEAD WAVE SHAPER - ALUMINUM ADAPTOR PLATE 
500 BI-EXPLOSIVE T.OADING FIXTURE 

Explosive: 
Inner: 60/40 c0mp.B 
Outer 75/25 o c t o l  

Travel :  33-in. (vacuum) 
Veloc i ty :  11.02 km/sec 

965-9 

Explosive: 
Inner :  75/25 o c t o l  
Outer : PBX 9404 

Travel :  33-in. (vacuum) 
Veloc i ty :  11.52 km/sec 

965-8 

*I 

** 
c 

l R  

c 
\ 

b 

* 

Sca le  in Inches 
2 13 I 

W 

I I 1 1 

Fig .  35. Comparison of j e t s  produced using comp.B/octol 
and octol/PBX9404 b i -explos ive  charges.  
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70°,.020-INCH WALL SECTIONED HYPERBOLIC LINER DRB-23-2598 
BASE ( l / b - I N C H )  SECTION MATERIAL: EBM IRON 
EXPLOSIVE: INNER, 75/25 OCTOL; OUTER, HMX 

4-3" R I G I D  POLYURETHANE FOAM WAVE SHAPER 
500 BI-EXPLOSIVE LOADING FIXTUIIE 

ALUMINUM ADAPTER PLATE 

Main (Upper )Sec t ion  M a t e r i a l :  Main(Upper)Sec t ion  M a t e r i a l :  
EBM I r o n  B a t t e l l e  P u r e  I r o n  

T r a v e l :  35 - in .  (Vacuum) T r a v e l :  3 2 - i n .  (Vacuum) 
V e l o c i t y :  11.33 km/sec V e l o c i t y :  10.94 km/sec 

975-1 975-2 

S c a l e  i n  i n c h e s  
0 I 2 

F i g .  37. Comparison of  j e t s  produced by s e c t i o n e d  l i n e r s  u s i n g  
B a t t e l l e  p u r e  i r o n  and e l e c t r o n  beam m e l t e d  i r o n .  
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500 NICKEL 270 HYPERBOLIC LINER 

500 BI-EXPLOSIVE LOADING FIXTURE 
EXPLOSIVE: INNER, 60/40 COMP. B ;  OUTER, 75/25 OCTOL 

. 030- i n .  Wall (DRB-23-2439) .020- in .  Wa 11 (DBR-23- 2544) .020- in.  Wall ( DRB- 23-2544) 
800 Lead Wave Shaper 80° Lead Wave Shaper 
Aluminum Adapter P l a t e  Aluminum Adapter P l a t e  S t e e l  Adapter P l a t e  

Travel: 25-in. A i r  Travel: 32-in. (vacuum) Travel: 31-111. (vacuum) 
Velocity: 10.51 km/sec Velocity: 11.19 km/sec Velocity: 11.25 km/sec 

43O Polyurethane Wave Shaper 

950- 1 950-2 973-2 

C 

I 

Ir 

S c a l e  i n  I n c h e s  
0 I 

F i g .  39. Improvement of n i c k e l  j e t  by v a r i o u s  d e s i g n  c h a r g e s .  



HYPERBOLIC EXPLOSIVE V A R I A T I O N  TESTS 
50°, .020-INCH WALL NICKEL 270 LINER DWG. DFB-23-2544 

500 BI-EXPLOSIVE LOADING FIXTURE 
8 0 0  LEAD WAVE SHAPER 
ALUMINUM ADAPTER PLATE 

Explosive: Explosive: 
Inner: 60/40 Comp. B Inner:  75/25 O c t o l  
Outer: 75/25 Octol Outer: HMX 

950-2 950-3 
Travel:  32-in.(vacuum) Travel:  3l-in.(vacuum) 
Velocity:  11.19 km/sec Veloci ty:  11.77 km/sec 

b 

Scale  i n  inches 
0 I 2 
I I 1 I 1 

F i g .  40. Comparison of n i cke l  j e t s  produced u s i n g  comp.B/ 
octo1 and octol/HMX bi -explos ive  charges.  



50°, .020-INCH WALL NICKEL 270 LINER DWG. DRB-23-2544- 
EXPLOSIVE: INNER, 60/40 COW. B; OUTER 75/25 OCTOL 

43" POLYJRETHANE WAVE SHAPER 
STEEL ADAPTER PLATE 

500 BI-EXPLOSIVE LOADING FIXTURE 

973-2 
Travel: 3l-in.(vacuum) 
Velocity: 11.25 km/sec 

" 

e -  

973 -3 
Travel: 33-in. (vacuum) 
Velocity: 11.25 km/sec 

Scale in Inches 
0 I 2 
j 

Fig. 41. Comparison of two nickel jets produced by 50°, .020- 
inch hyperbolic liners assembled with iron adaptors. 
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400, .030-INCH WALL HYPERBOLIC LINER (DRB-23-2073-1)  
EXPLOSIVE: 75/25 OCTOL 

bnvb loll 

NICKEL TYPE 270 TYPE 1020 STEEL INGOT IRON FORMA IRON EBM IRON 
i -_1__,--  

- m r r * r d  .anadd an-mdrj 

sioiion I foproxlmafelvs 34- inKhes of wl le i  frovell 
b , V 

I 

L 
L ---+ --I 

sfohon 2 fopprmimoiely 96-Inches cf Dell$/ frovell 

e' 
- -  

I 

.- 

FERROVAC IRON 

iarged Bamealed 1 m rece~md I 
922-20"' 922-21'" 

.. 

-)" j 
iiilhese rounds r a n  Iesled m Ihe #:12- charge corllgurahon. all Others wed  Ihs 1'10.9' caniquml~m 

upproximole scale 
finches) 

Fig.  46. Comparison of j e t s  produced by 40°, .030- 
inch  w a l l  l i n e r s  u s i n g  v a r i o u s  m a t e r i a l s .  
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CROSS- SECTIONAL AREA
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• ._POSITION of INTERNAL

X a I.O 2.0
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CHARGE

"-,-LINER WALL

EFFECT of CHANGING CHARGE TAPER(@)
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DISPLACEMENT ALONG CHARGE AXIS (inches)

Fig. 47. Sketches of explosive external co.ntour

relative to liner outer wall.



I0.0,

9.0

_8.0

.,J

u)
_i,.o

Q:

5.0 '

posifion of liner
inferno/ opex

position of
_=4" liner bose

h=125o-

h=1.125

_:10*57'-

_:11°16 '

h-'AREA RATIO FOR LINEAR DESIGN

4.0 I I
0 ID 2.0

DISPLACEMENT ALONG LINER AXIS (inches)

b

Fig. 48. C/M ratios for mono-explosive charge co aflguratlons tested."
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